

OPTION FOR ABB DRIVES, CONVERTERS AND INVERTERS

FDNA-01 DeviceNet adapter module User's manual

List of related manuals

See section Related manuals on page 15.

You can find manuals and other product documents in PDF format on the Internet. See section Document library on the Internet on the inside of the back cover. For manuals not available in the Document library, contact your local ABB representative.

The code below opens an online listing of the manuals applicable to the product:

FDNA-01 manual

Fieldbus connectivity webpage

User's manual

FDNA-01 DeviceNet adapter module

3AFE68573360 Rev G EN EFFECTIVE: 2018-12-24

© 2018 ABB Oy All Rights Reserved.

Table of contents

1. Safety instructions

What this chapter contains	11
Use of warnings	11
Safety in installation	12

2. About the manual

What this chapter contains	
Purpose of the manual	
Applicability	
Compatibility	
Target audience	_
Before you start	-
Related manuals	
Contents	
Cyber Security Disclaimer 17	
Terms and abbreviations used in this manual	
General terms and abbreviations	
DeviceNet terms and abbreviations	

3. Overview of the DeviceNet network and the FDNA-01 module

What this chapter contains	21
DeviceNet network	21
Example topology of the DeviceNet link	22
FDNA-01 DeviceNet adapter module	23
Layout of the adapter module	24

4. Mechanical installation

What this chapter contains	25
Necessary tools and instructions	25
Unpacking and examining the delivery	25
Installing the adapter module	26

6 Table of contents

5. Electrical installation

What this chapter contains
Necessary tools and instructions
General cabling instructions
Connecting the module to the DeviceNet network
Terminal block description
Connection examples
Switching on the bus termination
6. Start-up
What this chapter contains
Drive configuration
DeviceNet connection configuration
FDNA-01 configuration parameters – group A (group 1) 35
FDNA-01 configuration parameters – group B (group 2) 45
FDNA-01 configuration parameters – group C (group 3) 46
Control locations
Starting up ACS355 drives
Parameter setting examples – ACS355
ABB Drives profile
ODVA AC/DC drive profile
Starting up ACSM1 drives
Parameter setting examples – ACSM1
ABB Drives profile
ODVA AC/DC drive profile
Starting up ACS850 and ACQ810 drives57
Parameter setting examples – ACS850 and ACQ810 58
ABB Drives profile
ODVA AC/DC drive profile 61
Starting up ACS880, ACS580, ACQ580, ACH580, ACS580 drives
63
Parameter setting examples – ACS880 63
ABB Drives profile63
ODVA AC/DC drive profile65
Configuring the master station
EDS files

Configuring an Allen-Bradley® PLC68	9
7. Communication profiles	
What this chapter contains 7	5
Communication profiles 7	5
ODVA AC/DC drive profile	7
ODVA output attributes	7
Run Forward & Run Reverse	
(Control supervisor object)	8
Fault Reset (Control supervisor object)	8
Net Ctrl (Control supervisor object)	8
Net Ref (AC/DC drive object)	8
Speed Reference (AC/DC drive object)	8
Torque Reference (AC/DC drive object)	0
ODVA input attributes	1
Faulted (Control supervisor object)	1
Warning (Control supervisor object)	1
Running Forward (Control supervisor object)	1
Running Reverse (Control supervisor object)	1
Ready (Control supervisor object)	1
Ctrl From Net (Control supervisor object)	1
Ref From Net (AC/DC drive object) 8	1
At Reference (AC/DC drive object)	2
State (Control supervisor object)	2
Speed Actual (AC/DC drive object)	4
Torque Actual (AC/DC drive object)8	5
ABB Drives communication profile	6
Control word and Status word8	6
Control word contents 8	6
Status word contents	9
State machine 9	1
References	2
Scaling	2
Actual values	3
Scaling	3

8. Communication protocol

What this chapter contains	. 95
DeviceNet	. 95
Object modeling and functional properties	. 95
Assembly objects	. 96
Basic speed control assembly	. 96
Basic speed control plus drive parameters assembly	. 97
Extended speed control assembly	. 99
Extended speed control plus drive parameters assembly	100
Basic speed and torque control assembly	102
Basic speed and torque control	
plus drive parameters assembly	103
Extended speed and torque control assembly	106
Extended speed and torque control	
plus drive parameters assembly	107
ABB Drives profile with set speed assembly	109
ABB Drives profile with set speed	
plus drive parameters assembly	110
ABB Drives profile with set speed and	
set torque assembly	113
ABB Drives profile with set speed and set torque	
plus drive parameters assembly	114
Transparent 16 with one assembly	116
Transparent 16 with one assembly plus drive parameters	117
Transparent 16 with two assembly	119
Transparent 16 with two assembly plus drive parameters .	120
Transparent 32 with one assembly	123
Transparent 32 with one assembly plus drive parameters	124
Transparent 32 with two assembly	126
Transparent 32 with two assembly plus drive parameters .	128
Class objects	131
Identity object, class 01h	132
Class attributes (Instance #0)	132
Instance attributes (Instance #1)	133
Attribute explanations	133
DeviceNet object, class 03h	135

Class attributes 13	5
Instance attributes 13	6
Connection object, class 05h	6
Class attributes	7
Instance attributes 13	7
Acknowledge handler object, class 2Bh	9
Class attributes (Instance #0) 13	9
Instance attributes (Instance #1)	9
Motor data object, class 28h 14	0
Class attributes (Instance #0) 14	0
Instance attributes (Instance #1)	1
Control supervisor object, class 29h 14	1
Class attributes (Instance #0) 14	2
Instance attributes (Instance #1)	2
AC/DC-drive object, class 2Ah 14	4 <mark>(</mark>
Class attributes (Instance #0) 14	4
Instance attributes (Instance #1)	4
Drive parameter object, Class 90h	5
Fieldbus configuration object 91h 14	6
Class attributes 14	6
Instance #1: FDNA-01 configuration parameters	
group A (group 1) 14	6
Instance #2: FDNA-01 configuration parameters	
group B (group 2) 14	9
Instance #3: FDNA-01 configuration parameters	
group C (group 3)	0
9 Diagnostics	
What this sharter contains	2
Foult and warning massages	3
	3
	4
10. Technical data	
What this chapter contains	7
FDNA-01	8
DeviceNet link	9

11. Appendix A – Varying the number of drive parameters

What this chapter contains .	 		 							161
Modification of the EDS file	 		 							161

Further information

1

Safety instructions

What this chapter contains

The chapter contains the warning symbols used in this manual and the safety instructions which you must obey when you install or connect an optional module to a drive, converter or inverter. If you ignore the safety instructions, injury, death or damage can occur. Read this chapter before you start the installation.

Use of warnings

Warnings tell you about conditions which can cause injury or death and, or damage to the equipment. They also tell you how to prevent the danger. The manual uses these warning symbols:

Electricity warning tells you about hazards from electricity which can cause injury or death, or damage to the equipment.

General warning tells you about conditions, other than those caused by electricity, which can cause injury or death, or damage to the equipment.

Safety in installation

These instructions are for all who install or connect an optional module to a drive, converter or inverter and need to open its front cover or door to do the work.

WARNING! Obey these instructions. If you ignore them, injury or death, or damage to the equipment can occur.

- If you are not a qualified electrician, do not do installation or maintenance work.
- Disconnect the drive, converter or inverter from all possible power sources. After you have disconnected the drive, converter or inverter, always wait for 5 minutes to let the intermediate circuit capacitors discharge before you continue.
- Disconnect all dangerous voltages connected to other control signal connectors in reach. For example, it is possible that 230 V AC is connected from outside to a relay output of the drive, converter or inverter.
- Always use a multimeter to make sure that there are no parts under voltage in reach. The impedance of the multimeter must be at least 1 Mohm.

2

About the manual

What this chapter contains

This chapter introduces this manual.

Purpose of the manual

The manual provides information on installing, commissioning and using an FDNA-01 DeviceNet adapter module.

Applicability

This manual applies to the FDNA-01 DeviceNet adapter module (+K451), SW version 2.30 or later.

Compatibility

The FDNA-01 DeviceNet adapter module is compatible with the following drives:

- ACS355
- ACSM1
- ACS380
- ACH580
- ACQ580
- ACS580
- ACS850
- ACQ810
- ACS880.

The FDNA-01 DeviceNet adapter module is compatible with all master stations that support the DeviceNet[™] protocol.

Note: The adapter module is compatible with more drives that may not be listed here. For details of compatibility, check the drive's firmware manual.

Target audience

This manual is intended for people who plan the installation, install, start up, use and service the adapter module. Before you do work on the module, read this manual and the applicable drive manual that contains the hardware and safety instructions for the product in question.

You are expected to know the fundamentals of electricity, wiring, electrical components and electrical schematic symbols.

The manual is written for readers worldwide. Both SI and imperial units are shown.

Before you start

It is assumed that the drive is installed and ready to operate before you start the installation of the adapter module.

In addition to conventional installation tools, have the drive manuals available during the installation as they contain important information not included in this manual. The drive manuals are referred to at various points of this manual.

Related manuals

The related manuals are listed below.

Drive manuals and guides	Code (EN/Multilingual)
ACSM1 manuals	00578051
ACS380-04 manuals	9AAK10103A6193
ACH580-01 manuals	9AKK10103A0587
ACH580-04 manuals	9AKK106930A9059
ACH580-07 manuals	9AKK106930A5241
ACQ580-01 manuals	9AKK106713A2709
ACQ580-04 manuals	9AKK106930A9053
ACQ580-07 manuals	9AKK106930A3150
ACS580-01 manuals	9AKK105713A8085
ACS580-04 manuals	9AKK106930A9060
ACS580-07 (75 to 250 kW) manuals	9AKK106930A5239
ACS580-07 (250 to 500 kW)	9AKK106713A0278
ACQ810 manuals	00598718
ACS850-04 manuals	00592009
ACS880-01 manuals	9AKK105408A7004
ACS880-04 manuals	9AKK105713A4819
ACS880-07 manuals (45 to 710 kW)	9AKK105408A8149
ACS880-07 (560 to 2800 kW)	9AKK105713A6663
ACS880-17 (132 to 355 kW)	9AKK106930A3466
ACS880-17 (160 to 3200 kW)	9AKK106354A1499
ACS880-37 (132 to 355 kW)	9AKK106930A3467
ACS880-37 (160 to 3200 kW)	9AKK106354A1500

Option manuals and guides

FDNA-01 DeviceNet adapter module user's manual FDNA-01 DeviceNet adapter module quick guide

3AFE68573360 3AXD50000158515

Contents

The manual consists of the following chapters:

- Safety instructions contains the safety instructions which you must follow when installing a fieldbus adapter module.
- About the manual introduces this manual.
- Overview of the DeviceNet network and the FDNA-01 module contains a short description of the DeviceNet network and the adapter module.
- *Mechanical installation* contains a delivery checklist and instructions to install the adapter module.
- Electrical installation contains cabling and bus termination instructions and instructions on connecting the module to the DeviceNet network.
- Start-up presents the steps to take during the start-up of the drive with the adapter module and gives examples of configuring the master system.
- Communication profiles describes the communication profiles used in the communication between the DeviceNet network, the adapter module and the drive.
- Communication protocol describes the DeviceNet communication protocol for the adapter module and the configuration of the scanner.
- *Diagnostics* explains how to trace faults with the status LEDs on the adapter module.
- Technical data contains the technical data of the adapter module and the DeviceNet link.
- Appendix A Varying the number of drive parameters describes how to reduce the number of drive parameter members in FDNA-01 assemblies by modifying the EDS file.

Cyber Security Disclaimer

This product is designed to be connected to and to communicate information and data via a network interface. It is Customer's sole responsibility to provide and continuously ensure a secure connection between the product and Customer network or any other network (as the case may be). Customer shall establish and maintain any appropriate measures (such as but not limited to the installation of firewalls, application of authentication measures, encryption of data, installation of anti-virus programs, etc.) to protect the product, the network, its system and the interface against any kind of security breaches, unauthorized access, interference, intrusion, leakage and/or theft of data or information. ABB and its affiliates are not liable for damages and/or losses related to such security breaches, any unauthorized access, interference, intrusion, leakage and/or theft of data or information.

Note: The web pages are meant only for configuring the device during commissioning. For security reasons, it is recommended to disable the web pages after commissioning.

Terms and abbreviations used in this manual

General terms and abbreviations

Term	Explanation
Command word	See Control word.
Communication module	Communication module is a name for a device (eg, a fieldbus adapter) through which the drive is connected to an external communication network (eg, a fieldbus). The communication with the module is activated with a drive parameter.
Control word	16-bit or 32-bit word from master to slave with bit-coded control signals (sometimes called the Command word).
DCU profile	Drive Control Unit profile, native profile used in the ACS350 and ACS355 drives
DTC	Direct Torque Control is a motor control method for AC drives. DTC allows accurate control of both motor speed and torque without pulse encoder feedback from the motor shaft.
FBA profile	Fieldbus Adapter profile, native profile used in the ACQ810, ACS850 and ACSM1 drives
FDNA-01 DeviceNet adapter module	One of the optional fieldbus adapter modules available for ABB drives. FDNA-01 is a device through which an ABB drive is connected to a DeviceNet serial communication bus.
LSW	Least significant word
MSW	Most significant word
Parameter	An operating instruction for the drive. Parameters can be read and programmed with the drive control panel, drive PC tools or through the adapter module.
Profile	Adaptation of the protocol for certain application field, for example, drives. In this manual, drive-internal profiles (eg, DCU or FBA) are called native profiles.

Term	Explanation
RFG	Ramp Function Generator
Status word	16-bit or 32-bit word from slave to master with bit-coded status messages

DeviceNet terms and abbreviations

Term	Explanation				
Change of State/Cyclic Message	Change of State/Cyclic Message is transmitted by either the master or the slave. A Change of State/Cyclic Message is directed towards a single specific node (point-to-point). An Acknowledge Message may be returned in response to this message.				
CIP™	Common Industrial Protocol (CIP) is an industrial protocol for industrial automation applications. It is managed by ODVA.				
EDS File	Electronic Data Sheet (EDS) file identifies the properties of the device to the DeviceNet Scanner. Each type of drive and application program requires its own EDS file.				
Input	In the ODVA DeviceNet specification the word 'input' is used to describe data flow from a device (such as FDNA-01) to the network.				
I/O assembly selection	Smart networked devices (like FDNA-01) can produce and/or consume more than one I/O value. Typically, they produce and/or consume one or more I/O value, as well as status and diagnostic information. Each piece of data communicated by a device is represented by an attribute of one of the device's internal objects. Communicating multiple pieces of data (attributes) across a single I/O connection requires that the attributes be grouped or assembled together into a single block.				
MAC ID	Every node on DeviceNet network has to have a unique identifier. This node number is called MAC ID (Media Access Control Identifier).				

Term	Explanation			
ODVA™	ODVA stands for Open DeviceNet Vendor Association. ODVA is an independent organization that promotes interoperativity between different manufacturers' DeviceNet products. ABB is an Associate Member at ODVA.			
Output	In the ODVA DeviceNet specification the word 'output' is used to describe data flow from the network into a device (such as FDNA-01).			
Poll Message	Most DeviceNet Scanners as well as the FDNA- 01 module support two different data services. These are Poll and Change of State/Cyclic messages. The Poll Command is an I/O Message that is transmitted by the master. A Poll Command is directed towards a single, specific slave (point- to-point, FDNA-01 always acts as a slave). A master must transmit a separate Poll Command Message for each of its slaves that is to be polled. The Poll Response is an I/O Message that a slave transmits back to the master when the Poll Command is received.			
Scanlist	DeviceNet Scanner communicates with the DeviceNet slaves in a user-defined order. This order of communication is the scanlist. The scanlist contains a complete list of the slave nodes and the order in which the slaves are accessed.			

3

Overview of the DeviceNet network and the FDNA-01 module

What this chapter contains

This chapter contains a short description of the DeviceNet network and the FDNA-01 DeviceNet adapter module.

DeviceNet network

The DeviceNet network has a linear bus topology. Terminating resistors are required on each end of the trunk line. Drop lines as long as 6 metres (20 feet) each are permitted, allowing one or more nodes to be attached. DeviceNet allows branching structures only on drop lines.

The maximum length of the trunk cable depends on the data rate and on the type of the cable used (see chapter *Technical data*).

Example topology of the DeviceNet link

The figure below shows an example of an allowable topology of FDNA-01.

FDNA-01 DeviceNet adapter module

The FDNA-01 DeviceNet Adapter module is an optional device for ABB drives. It enables the connection of the drive to a DeviceNet network. The drive is considered a slave in the DeviceNet network.

Through the adapter module you can:

- give control commands to the drive (for example, Start, Stop, Run enable)
- feed a motor speed or torque reference to the drive
- give the actual value or reference of the process to the PID controller of the drive
- read status information and actual values from the drive
- change drive parameter values
- reset a drive fault.

The adapter module acts as a class 2 slave only with predefined master-slave connection set services. These include the explicit messaging, the poll-response service and the change of state/ cyclic service. The DeviceNet commands and services supported by the adapter module are described in chapter *Communication protocol*.

The adapter module is mounted into an option slot on the motor control board of the drive. See the drive manuals for the module placement options.

Layout of the adapter module

The figure shows the layout of FDNA-01.

4

Mechanical installation

What this chapter contains

This chapter contains a delivery checklist and instructions to install the adapter module.

Necessary tools and instructions

You will need a Torx TX10 screwdriver to secure the FDNA adapter module to the drive. See also, the applicable drive hardware manual.

1

Unpacking and examining the delivery

- 1. Open the option package.
- 2. Make sure that the package contains:
 - DeviceNet adapter module, type FDNA-01
 - this manual.
- 3. Make sure that there are no signs of damage.

Installing the adapter module

WARNING! Obey the safety instructions. See chapter *Safety instructions* on page *11*. If you ignore the safety instructions, injury or death can occur.

The adapter module has a specific position in the drive. You can plug and unplug the adapter when the drive is power off and no external 24 voltage supplied to the control board. Plastic pins, a lock and one screw to hold the adapter module in place. The screw also makes an electrical connection between the module and drive frame for cable shield termination.

When the adapter module is installed, it makes the signal and power connection to the drive through a 20-pin connector.

When you install or remove the adapter module from the control unit:

- 1. Pull out the lock.

- 2. Put the adapter module carefully into its position on the drive.
- 3. Push in the lock.

4. Tighten the screw to torque 0.8 N·m using a Torx TX10 screwdriver.

Note: A too high torque may break the screws. It is necessary to tighten the screw properly to fulfill the EMC requirements and to ensure the proper operation of the module.

See the applicable drive manual for further instructions on how to install the adapter module to the drive.

28 Mechanical installation

٢

Electrical installation

What this chapter contains

This chapter contains:

- · general cabling instructions
- instructions on connecting the module to the DeviceNet network
- ٠ instructions on switching on the bus termination.

WARNING! Obey the safety instructions. See chapter Safety instructions on page 11. If you ignore the safety instructions, injury or death can occur. If you are not a gualified electrician, do not do electrical work.

Necessary tools and instructions

See the applicable drive hardware manual.

General cabling instructions

- Arrange the bus cables as far away from the motor cables as possible.
- Avoid parallel runs.
- Use bushings at cable entries.

Connecting the module to the DeviceNet network

Connect the bus cable to terminal block X1 on the adapter module.

Terminal block description

X1		Description	
1	V-	Network power supply ground (0V DC)	
2	CAN_L	CAN_L bus line	
3	SHLD	Network cable shield	
4	CAN_H	CAN_H bus line	
5	V+	Network power supply source (24V DC)	

Connection examples

5-pin micro-style connector:

5-pin mini-style connector:

Standard open-style screw connector:

Switching on the bus termination

The adapter module does not provide bus termination. The DeviceNet network should be terminated at both ends of the trunk cable with a 121 ohm, $\frac{1}{2}$ W, 1% metal film resistor. Connect the resistor between the two signal wires (CAN_H, CAN_L) on the DeviceNet cable, as shown in the figure below.

Further information on the DeviceNet protocol is available at www.odva.org.

32 Electrical installation

1

6

Start-up

What this chapter contains

This chapter contains:

- information on configuring the drive for operation with the adapter module
- drive-specific instructions on starting up the drive with the adapter module
- examples of configuring the master station for communication with the adapter module.

WARNING! Obey the safety instructions given in this manual and the drive documentation.

Drive configuration

The following information applies to all drive types compatible with the adapter module, unless otherwise stated.

DeviceNet connection configuration

After the adapter module has been mechanically and electrically installed according to the instructions in chapters Mechanical installation and Electrical installation, the drive must be prepared for communication with the module.

The detailed procedure of activating the module for DeviceNet communication with the drive depends on the drive type. Normally, a parameter must be adjusted to activate the communication. See the drive-specific start-up procedures starting on page 47.

Once communication between the drive and the adapter module has been established, several configuration parameters are copied to the drive. These parameters are shown in the tables below and must be checked first and adjusted where necessary.

Note: Not all drives display descriptive names for the configuration parameters. To help you identify the parameters in different drives, the names displayed by each drive are given in grey boxes in the tables

Note: The new settings take effect only when the adapter module is powered up the next time or when the fieldbus adapter refresh parameter is activated.

Note: If communication between the adapter module and DeviceNet master is established, changes to the configuration parameters can be done also through Fieldbus configuration object 91h.

FDNA-01 configuration parameters – group A (group 1)

Note: The actual parameter group number depends on the drive type. Group A (group 1) corresponds to:

- parameter group 51 in ACS355, ACSM1, ACS850 and ACQ810
- parameter group 51 in ACS880 if the adapter is installed as fieldbus adapter A or group 54 if the adapter is installed as fieldbus adapter B.

No.	Name/Value	Description	Default
01	FBATYPE	Read-only. Shows the fieldbus adapter type as detected by the drive. Value cannot be adjusted by the user. If the value is 0 = None, the communication between the drive and the module has not been established.	1 = Devi- ceNet
02	MAC ID	Defines the MAC ID number for the drive the adapter module is connected to. Each device on the DeviceNet network must have a unique MAC ID number.	63
	063	MAC ID	
03	Baud rate	Indicates the detected communication speed in kbit/s.	0 = 125 kbit/s
	0 = 125 kbit/s	Communication speed is 125 kbit/s.	
	1 = 250 kbit/s	Communication speed is 250 kbit/s.	
	2 = 500 kbit/s	Communication speed is 500 kbit/s.	
04	Drive profile	Defines the communication used between the module and the drive (not fieldbus and module). If a drive supports more than one drive profile, this parameter is used to select the preferred profile. Presently, to use the ODVA and ABB Drives profiles, the drive must support a native profile (eg, DCU or FBA). Transparent16 and Transparent32 profiles may be used with any drive profile.	0 = Native prof
	0 = Native prof	Native profile of the drive selected	
05	ODVA stop func	Used with the ODVA AC/DC drive profile. Determines how the motor is stopped when a stop command is received via DeviceNet.	0 = Ramp stop
	0 = Ramp stop	Motor decelerates along the active deceleration ramp.	

 $\hat{\mathbb{O}}$

No.	Name/Value	Description					Default
	1 = Coast stop	Мо	Motor comes to a stop by coasting.				
06	Output instance	Configures the output assembly instances used by the adapter module. Tables below list the supported assemblies and allowed combinations. For the descriptions of the assembly instances, see section Assembly objects on page 96.				20	
	Name		Output instance	Input instance	Default input size (bytes)	Profile	
	Basic speed contr	ol	20	70	4	ODVA AC/D	C drive
	Extended speed control		21	71	4	ODVA AC/D	OC drive
	Basic speed and torque control Extended speed and torque control		22	72	6	ODVA AC/D	OC drive
			23	73	6	ODVA AC/D	OC drive
	Basic speed contr plus drive parame	ol ters	120	170	24	ODVA AC/D	OC drive
	Extended speed control plus drive parameters		121	171	24	ODVA AC/D	OC drive
	Basic speed and torque control plus drive parameters	6	122	172	26	ODVA AC/D	C drive
	Extended speed a torque control plus drive parameters	nd S	123	173	26	ODVA AC/D	OC drive
	ABB Drives profile with set speed		801	851	4	ABB Drives	
	ABB Drives profile with set speed and set torque	e d	802	852	6	ABB Drives	
	(continued)						
No.	Name/Value	Description	scription				
-----	---	--------------------	-------------------	-------------------------------------	------------	-----	
	Name	Output instance	Input instance	Default input size (bytes)	Profile		
	(continued)		1				
	ABB Drives profile with set speed plu drive parameters	901 s	951	24	ABB Drives	i	
	ABB Drives profile with set speed and set torque plus dri parameters	e 902 d ve	952	26	ABB Drives	i	
	ABB Drives profile with set speed plu drive parameters	901 s	951	24	ABB Drives	i	
	Transparent16 wit one	h 811	861	4	Transparen	t16	
	Transparent16 wit two	h 812	862	6	Transparen	t16	
	Transparent16 wit one plus drive parameters	h 911	961	24	Transparen	t16	
	Transparent16 wit two plus drive parameters	h 912	962	26	Transparen	t16	
	Transparent32 wit one	h 821	871	8	Transparen	t32	
	Transparent32 wit	h 822	872	12	Transparen	t32	
	Transparent32 wit one plus drive parameters	h 921	971	28	Transparen	t32	
	Transparent32 wit two plus drive parameters	h 922	972	32	Transparen	t32	

No.	Nar	ne/Value	Description	1			Default
	Note: With ACSM1, ACQ810, ACS850 and ACS880, when using the ODVA AC/DC drive or ABB Drives profile, make sure that drive parameter 50.04 FBA REF MODESEL is set to SPEED. With ACSM1, ACS850 and ACS880, make sure that 50.05 FBA REF2 MODESEL is set to TORQUE.						
				h	nput		
			ODVA (70-73; 170-173)	ABB DRIVES (851-852; 951-952	TRANSPARENT16 (861-862; 961-962)	TRAN (871-8	SPARENT32 72; 971-972)
		ODVA (20-23; 120-123)	x				
	thut	ABB DRIVES (801-802; 901-902)		x			
	Out	TRANSPARENT16 (811-812; 911-912)			x		
		TRANSPARENT32 (821-822; 921-922)					x
			For alternati instance in t Output insta	ve values, see he table descrit nce.	column Output bing parameter o	26	
07	Out	put num pars	Some assembly instances support transferring drive parameter values between the I/O scanner and drive. Parameters 07 Output num pars and 09 Input num pars specify how many drive parameter values should be included in the respective assembly instance. Changing the numbers of the drive parameters to values other than the defaults also changes the lengths of the associated assembly instances. This requires manual changes to either the EDS file or I/O scanner configuration. Before changing these parameters, consult Appendix A – Varying the number of drive parameters. Note: This parameter is only used when the output assembly instance is 120, 121, 122, 123, 901, 902, 911, 912, 921, 922. It must always be set to the default, 10, except as described in Appendix A – Varying the number of drive parameters.			10	
	1	10	Number or c included in t	Irive parameter he assembly in	values to be stance.		
08	Inpu	ut instance	Configures to by the adapt Output insta	he input assem ter module. See nce.	bly instances us parameter 06	sed	70
			For alternati Output insta	ve values, see nce.	parameter 06		

 \mathfrak{D}

No.	Name/Value	Description	Default
09	Input num pars	See parameter 07 <i>Output num pars</i> . Note: This parameter is only used when the input assembly instance is 170, 171, 172, 173, 951, 952, 961, 962, 971, 972. It must always be set to the default, 10, except as described in <i>Appendix A</i> – <i>Varying the number of drive</i> <i>parameters</i> .	10
	110	Number or drive parameter values to be included in the assembly instance.	

No.	Name/Value	Descripti	on		Default
10	ODVA speed scale	Defines the speed scale in the ODVA AC/DC drive profile. Units of reference and actual speeds for the ODVA AC/DC drive profile are given by the formula below. No effect on the ABB Drives profiles. Note: While a wide range of resolutions may be configured, the actual performance is limited to the performance capabilities of the drive. Speed unit = RPM X 2 ^(-1 X ODVA speed scale value) Table below shows how the values of drive parameter ODVA SPEED SCALE correspond to the ODVA Speed Scale units.		128	
	ODVA speed scale value ¹⁾ Speed scale v drive paramet		Speed scale value of drive parameter ²⁾	Unit	
	-5		123	32 RPM	
	-4		124	16 RPM	
	-3		125	8 RPM	
	-2		126	4 RPM	
	-1		127	2 RPM	
	0 (default)		128	1 RPM	
	1		129	0.5 RPM	
	2		130	0.25 RPM	
	3		131	0.125 RPM	
	4		132	0.0625 RPM	
	5		133	0.03125 RPI	M
	 Use the ODVA speed scale value when reading/writing parameter ODVA speed scale via AC/DC-drive object, class 2Ah. When written via the AC/DC drive object, the new value takes effect immediately. Use the speed scale value of the drive parameter when reading/writing parameter ODVA speed scale value of the drive control panel, Drive parameter object, Class 90h and Fieldbus configuration object 91h. When written via these methods, the new value takes effect after the drive is repowered or a "Fieldbus Adapter Parameter refresh" is given. 				

123133	Speed scale value of the drive parameter	

No.	Name/Value	Descripti	ion		Default	
11 ODVA torque scale Defines ti drive prot torques fit given by ABB Driv Note: Why configure the perfor (N·m = N) Torque ut Table bel paramete to the OD		the torque scale in the OD' ile. Units of reference and or the ODVA AC/DC drive the formula below. No effe es profiles. ille a wide range of resolut d, the actual performance mance capabilities of the ewton x Meter) nit = N·m x 2 ^(-1 × ODVA torque) ow shows how the values or ODVA TORQUE SCALE VA Torque Scale units.	VA AC/DC actual profile are ct on the ions may be is limited to drive. ue scale) of drive correspond	128		
	ODVA torque sca	ile value ¹⁾	Torque scale value of drive parameter ²⁾	Unit		
	-5		123	32 N∙m		
	-4		124	16 N·m		
	-3		125	8 N∙m		
	-2		126	4 N∙m		
	-1		127	2 N·m		
	0 (default)		128	1 N·m		
	1		129	0.5 N∙m		
	2		130	0.25 N·m		
	3		131	0.125 N·m		
	4		132	0.0625 N·m		
	5		133	0.03125 N·m		
	¹⁾ Use the ODVA torque scale value when reading/writing parameter ODVA torque scale via AC/DC-drive object, class 2Ah. When written via the AC/DC drive object, the new value takes effect immediately. ²⁾ Use the torque scale value of the drive parameter when reading/writing parameter ODVA torque scale via the drive control panel, Drive parameter object, Class 90h and Fieldbus configuration object 91h. When written via these methods, the new value takes effect after the drive is repowered or a "Fieldbus Adapter Parameter refersh" is given.			oDVA AC/DC rriting ometer en via ed or a		
	123133	Torque so	ale value of the drive para	ameter		
12	Reserved	Not used	by the adapter module.		N/A	
 25						

 \Diamond

No.	Name/Value Descript		Description			Default
26	3 Unrecover. error		Read-only. Shows information about the cause of an unrecoverable error in the adapter module. Bit field parameter, that is, several status bits can be set at a time. Value 0 indicates that there are no errors.		0	
	Bit	Bit Name		Value	Description	
	1	DUP MAC EF	RROR	0x0001	Duplicate MAC ID error	
	2	RX QUEUE C	OVERRUN	0x0002	Message receive queue	is full.
	3	TX QUEUE C	VERRUN	0x0004	Message transmit queue	e is full.
	4	IO_SEND_ER	ROR	0x0008	Transmitting I/O data ha	s failed.
	5	CAN_BUS_OF	F	0x0010	Bus-off is detected.	
	6	CAN_OVERRI	JN	0x0020	CAN message was lost.	
	7	DNS_RESET		0x0040	DeviceNet driver of the r	nodule is
		_			reset.	
	8	DNS_BUS_SE	NSE_ERROR	0x0080	No voltage detected in the network.	ne
	9	DNS_SWITCH	LERROR	0x0100	DeviceNet driver reset failed due to an invalid MAC ID or baud rate	
	13	3 SYS_FILE_ERR		0x1000	Initialization with the driv	e failed.
	065535 Active unreco		verable er	rors		
27	FBA par refresh Validates any configuration refreshing, the 0 = Done. Note: This pa the drive is ru		changed parameter value rev rameter canning.	adapter module r settings. After verts automatically to annot be changed while	0 = Done	
	0 = [Done	Refreshing done			
	1 = Refr	esh/Configure	Refreshing			
28 Par table ver Read-only. Di revision of the mapping files In format xyz, x = major revi y = minor revi z = correction OR in format axyz a = major revi z = correction vy = minor revi xy = minor revi z = correction		isplays the fieldbus is tored in th where sion numb number z, where sion num vision num number c	e parameter table adapter module ne memory of the drive. per per oper thers or letter.	N/A		
	0x00	000xFFFF	Parameter tab	ole revisio	n	

ĵ

No.	Name/Value	Description	Default
29	Drive type code	Read-only. Displays the drive type code of the fieldbus adapter module mapping file stored in the memory of the drive.	N/A
	065535	Drive type code of the fieldbus adapter module mapping file	
30	Mapping file ver	Read-only. Displays the fieldbus adapter module mapping file revision stored in the memory of the drive in decimal format. Example: 0x107 = revision 1.07.	N/A
	065535	Mapping file revision	
31	D2FBA comm sta	Read-only. Displays the status of the fieldbus adapter module communication. Note: The value names may vary by drive.	0 = Idle
	0 = Idle	Adapter is not configured.	
	1 = Exec.init	Adapter is initializing.	
	2 = Time out	Time-out has occurred in the communication between the adapter and the drive.	
	3 = Conf.err	Adapter configuration error: Major or minor revision code of the common program revision in the fieldbus adapter module is not the revision required by the module or mapping file upload has failed more than three times.	
	4 = Off-line	Adapter is off-line.	
	5 = On-line	Adapter is on-line.	
	6 = Reset	Adapter is performing a hardware reset.	
32	FBA comm SW ver	Read-only. Displays the common program revision of the adapter module in format axyz, where: a = major revision number xy = minor revision numbers z = correction number or letter. Example: 190A = revision 1.90A	N/A
	0x00000xFFFF	Common program version of the adapter module	

No.	Name/Value	Description	Default
33	FBA appl SW ver	Read-only. Displays the application program revision of the adapter module in format axyz, where: a = major revision number xy = minor revision numbers z = correction number or letter. Example: 190A = revision 1.90A	N/A
	0x00000xFFFF	Application program revision of the adapter module	

FDNA-01 configuration parameters – group B (group 2)

Note: The actual parameter group number depends on the drive type. Group B (group 2) corresponds to:

- parameter group 55 in ACS355
- parameter group 53 in ACSM1, ACS380, ACH580, ACQ580, ACS580, ACS850 and ACQ810
- parameter group 53 in ACS880 if the adapter is installed as fieldbus adapter A or group 56 if the adapter is installed as fieldbus adapter B.

No. ¹⁾	Name/Value	Description	Default
01	FBA data out1 (master to drive)	In the output assembly instances that include drive parameters, this parameter specifies which parameter's value is placed in location DATA OUT 1 value received by the drive from the DeviceNet network. Content is defined by a decimal number in the range of 0 to 9999 as follows:	0
		0 Not used	
		199 Virtual address area of drive control. Not used with the FDNA-01 module.	
		101 Parameter area of the drive 9999	
		Note: The FDNA-01 configuration parameters are 16-bit parameters. If the mapped parameter is a 32-bit parameter, it automatically reserves two consecutive parameters. For example, mapping a 32-bit parameter to parameter no. 1 also reserves parameter no. 2.	
	0	Not used	
	1019999	Parameter index with format xxyy , where xx is the parameter group number (199) and yy is the parameter number index within that group (0199).	
02 10	DATA OUT 2 DATA OUT 10	See parameter FBA data out1.	0

¹⁾ The number of parameters in this group may vary by drive type and drive firmware.

FDNA-01 configuration parameters – group C (group 3)

Note: The actual parameter group number depends on the drive type. Group C (group 3) corresponds to:

- parameter group 54 in ACS355
- parameter group 52 in ACSM1, ACS380, ACH580, ACQ580, ACS580, ACS850 and ACQ810
- parameter group 52 in ACS880 if the adapter is installed as fieldbus adapter A or group 55 if the adapter is installed as fieldbus adapter B.

No. ¹⁾	Name/Value	Description	Default
01	FBA data in1 (drive to master)	In input assembly instances that include drive parameters, this parameter specifies which parameter's value is placed in location DATA IN 1 value sent by the drive to the DeviceNet network. Content is defined by a decimal number in the range of 0 to 9999 as follows: 0 Not used 199 Virtual address area of drive control. Not used with the FDNA-01 module. 101 Parameter area of the drive 9999 Note: The FDNA-01 configuration parameters are 16-bit parameters. If the mapped parameter is a 32-bit parameter, it automatically reserves two consecutive parameters. For example, mapping a 32-bit parameter no. 1 also reserves parameter no. 2.	0
	0	Not used	
	1019999	Parameter index with format xxyy , where xx is the parameter group number (199) and yy is the parameter number index within that group (0199).	
02 10	DATA IN 2 DATA IN 10	See parameter FBA data in1.	0

¹⁾ The number of parameters in this group may vary by drive type and drive firmware.

Control locations

ABB drives can receive control information from multiple sources including digital inputs, analog inputs, the drive control panel and a communication module (for example, the adapter module). ABB drives allow the user to separately determine the source for each type of control information (Start, Stop, Direction, Reference, Fault Reset, and so on).

To give the fieldbus master station the most complete control over the drive, the communication module must be selected as the source for this information. The parameter setting examples below contain the drive control parameters needed in the examples. For a complete parameter list, see the drive documentation.

Starting up ACS355 drives

- 1. Power up the drive.
- Enable the communication between the adapter module and the drive by setting parameter 9802 COMM PROT SEL to EXT FBA.
- 3. Set the FDNA-01 configuration parameters in parameter group 51.

At the minimum, set the required number in parameter **5102 MAC ID** and the required baud rate in **5103 BAUD RATE**. In addition, select the communication profile in **5104 DRIVE PROFILE**. With the ODVA AC/DC drive profile select the way in which the motor is stopped in **5105 ODVA STOP FUNC**.

4. Define the process data transferred to and from the drive in FDNA-01 parameter groups *54* and *55*.

Note: If communication between the FDNA-01 and DeviceNet master is established, changes to the configuration parameters can be done also through *Fieldbus configuration object 91h*.

5. Validate the settings made in parameter group *51* by setting parameter *5127 FBA PAR REFRESH* to REFRESH.

- 48 Start-up
- Set the relevant drive control parameters to control the drive according to the application. Examples of appropriate values are shown in the tables below.

Parameter setting examples – ACS355

ABB Drives profile

This example shows how to configure the ACS355 drive to use the ABB Drives profile with set speed and set torque plus drive parameters assembly.

The used I/O assembly instances are 902 and 952.

The table below gives the recommended drive parameter settings.

Drive parameter	Setting for ACS355 drives	Description
9802 COMM PROT SEL	4 = EXT FBA	Enables communication between drive and adapter module.
5101 FBA TYPE	DEVICENET ¹⁾	Displays the type of the adapter
	521102	module.
5102 FB PAR 2 (MAC ID)	2	Defines the MAC ID number of the adapter module.
5103 FB PAR 3 (BAUD RATE)	0 (= 125 kbit/s)	Sets the baud rate for the DeviceNet interface.
5104 FB PAR 4 (DRIVE PROFILE)	0 (= DCU Profile)	Selects the profile used in the communication between drive and adapter module.
5105 FB PAR 5 (ODVA STOP FUNC)	0 (= Ramp)	Motor decelerates along the active deceleration ramp.
5106 FB PAR 6 (OUTPUT INSTANCE)	902	Selects the ABB Drives profile with speed and torque plus drive parameters output instance.
5107 FB PAR 7 (OUTPUT NUM PARS)	10	Must always be set to 10, except as provided in <i>Appendix A</i> – <i>Varying the number of drive parameters</i> .
5108 FB PAR 8 (INPUT INSTANCE)	952	Selects the ABB Drives profile with speed and torque plus drive parameters input instance.

Drive parameter	Setting for ACS355 drives	Description
5109 FB PAR 9 (INPUT NUM PARS)	10	Must always be set to 10, except as provided in <i>Appendix A</i> – <i>Varying the number of drive parameters</i> .
5110 FB PAR 10 (ODVA SPEED SCALE)	128	Sets the scaling as 1 rpm for the ODVA speed reference.
5111 FB PAR 11 (ODVA TORQUE SCALE)	128	Sets the scaling as 1 Nm for the ODVA torque reference.
5401 FBA DATA IN 1	104	Current
5402 FBA DATA IN 2	107	DC bus voltage
5403 FB DATA IN 3 5410 DATA IN 10	0	
5501 FBA DATA OUT 1	2205	Acceleration time 2
5502 FBA DATA OUT 2	2206	Deceleration time 2
5503 FB DATA OUT 3 5510 DATA OUT 10	0	
51.27 FBA PAR REFRESH	1 = REFRESH	Validates the FDNA-01 configuration parameter settings.
1001 EXT1 COMMANDS	10 = COMM	Selects the fieldbus interface as the source of the start and stop commands for external control location 1.
1003 DIRECTION	3 = REQUEST	Allows control of rotation direction.
1103 REF1 SELECT	8 = COMM	Selects the fieldbus reference 1 as the source for speed reference.
1604 FAULT RESET SEL	8 = COMM	Selects the fieldbus interface as the source for the fault reset signal.
9904 MOTOR CTRL MODE	2 = VECTOR: TORQ	Selects the vector control mode as the motor control mode.
1002 EXT2 COMMANDS	10 = COMM	Selects the fieldbus interface as the source of the start and stop commands for external control location 2.
1102 EXT1/EXT2 SEL	8 = COMM	Enables external control location 1/2 selection through the fieldbus.
1106 REF2 SELECT	8 = COMM	Selects the fieldbus reference 2 as the source for torque reference.

Drive parameter	Setting for ACS355 drives	Description
1601 RUN ENABLE	7 = COMM	Selects the fieldbus interface as the source for the inverted Run enable signal (Run disable).

The start sequence for the parameter example above is given below.

Control word:

- 47Eh (1150 decimal) → READY TO SWITCH ON
- 47Fh (1151 decimal) \rightarrow OPERATING (Speed mode)

or

C7Fh (3199 decimal) \rightarrow OPERATING (Torque mode).

ODVA AC/DC drive profile

The following example shows how to configure the ACS355 drive to use the Extended speed and torque control assembly of the ODVA AC/DC drive profile.

The used I/O assembly instances are 23 and 73.

The table below gives the recommended drive parameter settings.

	Drive parameter	Setting for ACS355 drives	Description
>	9802 COMM PROT SEL	4 = EXT FBA	Enables communication between drive and adapter module.
	5101 FBA TYPE	DEVICENET ¹⁾	Displays the type of the adapter module.
	5102 FB PAR 2 (MAC ID)	5	Defines the MAC ID number of the adapter module.
	5103 FB PAR 3 (BAUD RATE)	0 (= 125 kbit/s)	Sets the baud rate for the DeviceNet interface.
	5104 FB PAR 4 (DRIVE PROFILE)	0 (= DCU Profile)	Selects the profile used in the communication between drive and adapter module.
	5105 FB PAR 5 (ODVA STOP FUNC)	0 (= Ramp)	Motor decelerates along the active deceleration ramp.

 $(\hat{})$

Drive parameter	Setting for ACS355 drives	Description
5106 FB PAR 6 (OUTPUT INSTANCE)	23	Selects the ODVA extended speed and torque control output instance.
5108 FB PAR 8 (INPUT INSTANCE)	73	Selects the ODVA extended speed and torque control input instance.
5110 FB PAR 10 (ODVA SPEED SCALE)	128	Sets the scaling as 1 rpm for the ODVA speed reference.
5111 FB PAR 11 (ODVA TORQUE SCALE)	128	Sets the scaling as 1 Nm for the ODVA torque reference.
51.27 FBA PAR REFRESH	1 = REFRESH	Validates the FDNA-01 configuration parameter settings.
1001 EXT1 COMMANDS	10 = COMM	Selects the fieldbus interface as the source of the start and stop commands for external control location 1.
1003 DIRECTION	3 = REQUEST	Allows control of rotation direction.
1103 REF1 SELECT	8 = COMM	Selects the fieldbus reference 1 as the source for speed reference.
1604 FAULT RESET SEL	8 = COMM	Selects the fieldbus interface as the source for the fault reset signal.
9904 MOTOR CTRL MODE	2 = VECTOR: TORQ	Selects the vector control mode as the motor control mode.
1002 EXT2 COMMANDS	10 = COMM	Selects the fieldbus interface as the source of the start and stop commands for external control location 2.
1102 EXT1/EXT2 SEL	1 = DI1	Selects digital input DI1 as the source for the external control location EXT1/EXT2 selection.
1106 REF2 SELECT	8 = COMM	Selects the fieldbus reference 2 as the source for torque reference.
1601 RUN ENABLE	7 = COMM	Selects the fieldbus interface as the source for the inverted Run enable signal (Run disable).

¹⁾ Read-only or automatically detected/set

Note: In this example, digital input DI1 has been configured to control whether to use the speed or torque control mode.

The start sequence for the parameter example above is given below.

Control word:

- 0h (0 decimal) \rightarrow READY
- 1h (1 decimal) → ENABLED (Running forward)
- 2h (2 decimal) \rightarrow ENABLED (Running reverse)

Starting up ACSM1 drives

- 1. Power up the drive.
- Enable the communication between the adapter module and the drive by setting parameter 50.01 FBA ENABLE to Enable.
- 3. Ensure that **50.04 FBA REF1 MODESEL** is set to Speed and **50.05 FBA REF2 MODESEL** is set to Torque.
- 4. Set the FDNA-01 configuration parameters in parameter group 51.
- 5. Define the process data transferred to and from the drive in FDNA-01 parameter groups *52* and *53*.

Note: If communication between the FDNA-01 and DeviceNet master is established, changes to the configuration parameters can be done also through *Fieldbus configuration object 91h*.

- Validate the settings made in parameter groups 51, 52 and 53 by setting parameter 51.27 FBA PAR REFRESH to REFRESH.
- Set the relevant drive control parameters to control the drive according to the application. Examples of appropriate values are shown in the tables below.

Parameter setting examples – ACSM1

ABB Drives profile

The following example shows how to configure the ACSM1 drive to use the ABB Drives profile.

The used I/O assembly instances are 902 and 952.

The table below gives the recommended drive parameter settings.

Drive parameter	Setting for ACSM1 drives	Description
50.01 FBA ENABLE	1 = Enable	Enables communication between drive and adapter module.
50.04 FBA REF1 MODESEL	Speed	Selects speed as the adapter module REF1 type.
50.05 FBA REF2 MODESEL	Torque	Selects torque as the adapter module REF2 type.
51.01 FBA TYPE	DEVICENET ¹⁾	Displays the type of the adapter module.
51.02 FBA PAR2 (MAC ID)	6	Defines the MAC ID number of the adapter module.
51.03 FBA PAR3 (BAUD RATE)	0 (= 125 kbit/s)	Sets the baud rate for the DeviceNet interface.
51.06 FBA PAR6 (OUTPUT INSTANCE)	902	Selects the ABB Drives profile with speed and torque plus drive parameters output instance.
51.07 FBA PAR7 (OUTPUT NUM PARS)	10	Must always be set to 10, except as provided in <i>Appendix A</i> – <i>Varying the number of drive parameters</i> .
51.08 FBA PAR8 (INPUT INSTANCE)	952	Selects the ABB Drives profile with speed and torque plus drive parameters input instance.
51.09 FBA PAR9 (INPUT NUM PARS)	10	Must always be set to 10, except as provided in <i>Appendix A – Varying</i> the number of drive parameters.
52.01 FBA DATA IN1	117	Motor temp
52.02 FBA DATA IN2	104	Motor current - MSW
52.03 FBA DATA IN3	0	Motor current - LSW
52.04 FBA DATA IN4	107	DC voltage - MSW

(î

Drive parameter	Setting for ACSM1 drives	Description
52.05 FBA DATA IN5	0	DC voltage - LSW
52.06 FBA DATA IN6	108	Encoder 1 speed - MSW
52.07 FBA DATA IN7	0	Encoder 1 speed - LSW
52.08 FBA DATA IN8 52.10 FBA DATA IN10	0	
53.01 FBA DATA OUT1	2503	Acceleration time - MSW
53.02 FBA DATA OUT2	0	Acceleration time - LSW
53.03 FBA DATA OUT3	2504	Deceleration time - MSW
53.04 FBA DATA OUT4	0	Deceleration time - LSW
53.05 FBA DATA OUT5	2408	Constant speed
53.06 FBA DATA OUT6	2410	Speed ref jog1
53.07 FBA DATA OUT7	2411	Speed ref jog2
53.08 FBA DATA OUT8 53.10 FBA DATA OUT10	0	
51.27 FBA PAR REFRESH	1 = REFRESH	Validates the FDNA-01 configuration parameter settings.
10.01 EXT1 START FUNC	3 = FBA	Selects the fieldbus interface as the source of the start and stop commands for external control location 1.
10.04 EXT2 START FUNC	3 = FBA	Selects the fieldbus interface as the source of the start and stop commands for external control location 2.
24.01 SPEED REF1 SEL	3 = FBA REF1	Selects the fieldbus reference 1 as the source for speed reference 1.
32.01 TORQ REF1 SEL	4 = FBA REF2	Selects the fieldbus reference 2 as the source for torque reference 1.
34.02 EXT1 MODE 1/2SEL	P.2.12.15 = P.FBA MAIN CW.15	Selects FBA Control word bit 15 as the source for the external control location EXT1/EXT2 selection.
34.03 EXT1 CTRL MODE1	1 = Speed	Selects speed as the control mode for external control location 1.
34.05 EXT2 CTRL MODE1	2 =Torque	Selects torque as the control mode for external control location 2.

Drive parameter	Setting for ACSM1 drives	Description
99.05 MOTOR CTRL MODE	0 = DTC	Selects DTC as the motor control mode.

The start sequence for the parameter example above is given below.

Control word:

- 47Eh (1150 decimal) → READY TO SWITCH ON
- 47Fh (1151 decimal) → OPERATING (Speed mode) or

C7Fh (3199 decimal) \rightarrow OPERATING (Torque mode).

ODVA AC/DC drive profile

The following example shows how to configure the ACSM1 drive to use the ODVA AC/DC drive profile.

The used I/O assembly instances are 23 and 73.

The table below gives the recommended drive parameter settings.

Drive parameter	Setting for ACSM1 drives	Description
50.01 FBA ENABLE	1 = Enable	Enables communication between drive and adapter module.
50.04 FBA REF1 MODESEL	Speed	Selects speed as the adapter module REF1 type.
50.05 FBA REF2 MODESEL	Torque	Selects torque as the adapter module REF2 type.
51.01 FBA TYPE	DEVICENET ¹	Displays the type of the adapter module.
51.02 FBA PAR2 (MAC ID)	5	Defines the MAC ID number of the adapter module.
51.03 FBA PAR3 (BAUD RATE)	0 (= 125 kbit/s)	Sets the baud rate for the DeviceNet interface.
51.06 FBA PAR6 (OUTPUT INSTANCE)	23	Selects the ODVA extended speed and torque control output instance.

 $\langle \!\!\!\!\!\!\!\!\!\!\rangle$

56 Start-up

Drive parameter	Setting for ACSM1 drives	Description
51.08 FBA PAR8 (INPUT INSTANCE)	73	Selects the ODVA extended speed and torque control input instance.
51.27 FBA PAR REFRESH	1 = REFRESH	Validates the FDNA-01 configuration parameter settings.
10.01 EXT1 START FUNC	3 = FBA	Selects the fieldbus interface as the source of the start and stop commands for external control location 1.
10.04 EXT2 START FUNC	3 = FBA	Selects the fieldbus interface as the source of the start and stop commands for external control location 2
24.01 SPEED REF1 SEL	3 = FBA REF1	Selects the fieldbus reference 1 as the source for speed reference 1.
32.01 TORQ REF1 SEL	4 = FBA REF2	Selects the fieldbus reference 2 as the source for torque reference 1.
34.01 EXT1/EXT2 SEL	P.2.1.0 = PI.DI STATUS.0	Selects digital input DI1 as the source for the external control location EXT1/EXT2 selection.
34.03 EXT1 CTRL MODE1	1 = Speed	Selects speed as the control mode for external control location 1.
34.05 EXT2 CTRL MODE1	2 =Torque	Selects torque as the control mode for external control location 2.
99.05 MOTOR CTRL MODE	0 = DTC	Selects DTC as the motor control mode.

 \bigcirc

1) Read-only or automatically detected/set

Note: In this example, digital input DI1 has been configured to control whether to use the speed or torque control mode.

The start sequence for the parameter example above is given below.

Control word:

- 0h (0 decimal) → READY
- 1h (1 decimal) → ENABLED (Running forward)
- 2h (2 decimal) → ENABLED (Running reverse)

Starting up ACS850 and ACQ810 drives

- 1. Power up the drive.
- Enable the communication between the adapter module and the drive by setting parameter 50.01 Fba enable to Enable.
- Ensure that 50.04 Fb ref1 modesel is set to Speed (both ACS850 and ACQ810) and 50.05 Fb ref2 modesel is set to Torque (only ACS850).
- 4. Set the FDNA-01 configuration parameters in drive parameter group *51*.
- 5. Define the process data transferred to and from the drive in FDNA-01 parameter groups *52* and *53*.

Note: If communication between the FDNA-01 and DeviceNet master is established, changes to the configuration parameters can be done also through *Fieldbus configuration object 91h*.

- 6. Validate the settings made in parameter groups *51*, *52* and *53* by setting parameter *51.27 FBA par refresh* to Refresh.
- Set the relevant drive control parameters to control the drive according to the application. Examples of appropriate values are shown in the tables below.

Parameter setting examples – ACS850 and ACQ810

ABB Drives profile

The following example shows how to configure the ACS850 or ACQ810 drive to use the ABB Drives profile.

The used I/O assembly instances are 902 and 952.

The table below gives the recommended drive parameter settings.

Drive parameter	Setting for ACS850/ACQ810 drives	Description
50.01 Fba enable	1 = Enable	Enables communication between drive and adapter module.
50.04 Fb ref1 modesel	Speed	Selects speed as the adapter module ref1 type.
50.05 Fb ref2 modesel	Torque	Selects torque as the adapter module ref2 type (only with ACS850).
51.01 Fba type	DEVICENET ¹⁾	Displays the type of the adapter module.
51.02 FBA par2 (MAC ID)	5	Defines the MAC ID number of the adapter module.
51.03 FBA par3 (BAUD RATE)	0 (= 125 kbit/s)	Sets the baud rate for the DeviceNet interface.
51.06 FBA par6 (OUTPUT INSTANCE)	902	Selects the ABB Drives profile with speed and torque plus drive parameters output instance.
51.07 FBA par7 (OUTPUT NUM PARS)	10	Must always be set to 10, except as provided in <i>Appendix A – Varying the number of drive parameters</i> .
51.08 FBA par8 (INPUT INSTANCE)	952	Selects the ABB Drives profile with speed and torque plus drive parameters input instance.
51.09 FBA par9 (INPUT NUM PARS)	10	Must always be set to 10, except as provided in <i>Appendix A</i> – <i>Varying the number of drive parameters</i> .
52.01 FBA data in1	123	Motor power
52.02 FBA data in2	0	Motor power - LSW

 $\langle \hat{\mathbf{D}} \rangle$

Drive parameter	Setting for ACS850/ACQ810 drives	Description
52.03 FBA data in3	105	Motor current percent
52.04 FBA data in4	107	DC voltage
52.05 FBA data in5	0	DC voltage - LSW
52.06 FBA data in6	108	Encoder1 speed
52.07 FBA data in7	0	Encoder 1 speed - LSW
52.08 FBA data in8 52.10 FBA data in10	0	
53.01 FBA data out1	2204	Acc time 2
53.02 FBA data out2	0	Acceleration time 2 - LSW
53.03 FBA data out3	2205	Dec time 2
53.04 FBA data out4	0	Deceleration time 2 - LSW
53.05 FBA data out5	2606	Const speed1
53.06 FBA data out6	2607	Const speed2
53.07 FBA data out7	2608	Const speed3
53.08 FBA data out8 53.10 FBA data out10	0	
51.27 FBA par refresh	1 = Refresh	Validates the FDNA-01 configuration parameter settings.
10.01 Ext1 start func	FB	Selects the fieldbus interface as the source of the start and stop commands for external control location 1.
10.04 Ext2 Start func	3 = FB	Selects the fieldbus as the source for start and stop commands for external control location EXT2 (only with ACS850).
12.01 Ext1/Ext sel	P.2.22.15 = P.FBA main cw.15	Selects FBA Control word bit 15 as the source for external control location EXT1/EXT2 selection (only with ACS850).
12.03 Ext1 ctrl mode	1 = Speed	Selects speed as the operating mode for external control location EXT1.

 \Diamond

Drive parameter	Setting for ACS850/ACQ810 drives	Description
12.05 Ext2 ctrl mode	2 = Torque	Selects torque as the operating mode for external control location EXT2 (only with ACS850).
16.15 Menu set sel (ACS850) 16.21 Menu selection (ACQ810)	2 = Load long (ACS850) 2 = Full (ACQ810)	Load long parameter list. All parameters will be displayed.
21.01 Speed ref1 sel	FB	Selects the fieldbus reference 1 as the source for speed reference 1.
24.01 Torq ref1 sel	FBA ref2	Selects fieldbus reference 2 as the source of the torque reference 1 (only with ACS850).

The start sequence for the parameter example above is given below.

Control word:

- 47Eh (1150 decimal) → READY TO SWITCH ON
- 47Fh (1151 decimal) \rightarrow OPERATING (Speed mode)

or

C7Fh (3199 decimal) \rightarrow OPERATING (Torque mode in ACS850).

 \Diamond

ODVA AC/DC drive profile

The following example shows how to configure the ACS850 or ACQ810 drive to use the ODVA AC/DC drive profile.

The used I/O assembly instances are 23 and 73.

The table below gives the recommended drive parameter settings.

Drive parameter	Setting for ACS850/ACQ810 drives	Description
50.01 Fba enable	1 = Enable	Enables communication between drive and adapter module.
50.04 Fb ref1 modesel	Speed	Selects speed as the adapter module ref1 type.
50.05 Fb ref2 modesel	Torque	Selects torque as the adapter module ref2 type (only with ACS850).
51.01 FBA type	DEVICENET ¹⁾	Displays the type of the adapter module.
51.02 FBA par2 (MAC ID)	5	Defines the MAC ID number of the adapter module.
51.03 FBA par3 (BAUD RATE)	0 (= 125 kbit/s)	Sets the baud rate for the DeviceNet interface.
51.06 FBA par6 (OUTPUT INSTANCE)	23	Selects the ODVA AC/DC drive profile output instance.
51.08 FBA par8 (INPUT INSTANCE)	73	Selects the ODVA AC/DC profile input instance.
51.27 FBA par refresh	1 = Refresh	Validates the FDNA-01 configuration parameter settings.
10.01 Ext1 start func	3 = FB	Selects the fieldbus interface as the source of the start and stop commands for external control location 1.
10.04 Ext2 Start func	3 = FB	Selects the fieldbus as the source for start and stop commands for external control location EXT2 (only with ACS850).

 \heartsuit

Drive parameter	Setting for ACS850/ACQ810 drives	Description
12.01 Ext1/Ext2 sel	DI1	Selects digital input DI1 as the source for external control location EXT1/EXT2 selection (only with ACS850).
12.05 Ext2 ctrl mode	2 = Torque	Selects torque as the operating mode for external control location EXT2 (only with ACS850).
16.15 Menu set sel (ACS850) 16.21 Menu selection (ACQ810)	2 = Load long (ACS850) 1 = Full (ACQ810)	Load long parameter list. All parameters will be displayed.
21.01 Speed ref1 sel	FBA ref1	Selects the fieldbus reference 1 as the source for speed reference 1.
24.01 Torq ref1 sel	FBA ref2	Selects fieldbus reference 2 as the source of the torque reference 1 (only with ACS850).

Note: For ACS850 in this example, digital input DI1 has been configured to control whether to use the speed or torque control mode.

The start sequence for the parameter example above is given below.

Control word:

٢ì

> 0h (0 decimal) \rightarrow READY

1h (1 decimal) \rightarrow ENABLED (Running forward)

2h (2 decimal) → ENABLED (Running reverse)

Starting up ACS880, ACS580, ACQ580, ACH580, ACS580 drives

This example sets up the fieldbus adapter installed as fieldbus adapter A. To set up the fieldbus adapter B, perform the same tasks with the corresponding parameters in parameter groups *50*, *54*, *55*, and *56*.

- 1. Power up the drive.
- Enable the communication between the adapter module and the drive by selecting the correct slot number in parameter 50.01 FBA A enable. The selection must correspond to the slot where the adapter module is installed. For example, if the adapter module is installed in slot 1, you must select slot 1.
- 3. Ensure that parameter **50.04 FBA A ref1 type** is set to Speed and parameter **50.05 FBA A ref2 type** is set to Torque.
- 4. Set the FDNA-01 configuration parameters in drive parameter group *51*.
- 5. Define the process data transferred to and from the drive in FDNA-01 parameter groups *52* and *53*.

Note: If communication between the FDNA-01 and DeviceNet master is established, changes to the configuration parameters can be done also through *Fieldbus configuration object 91h*.

 Validate the settings made in parameter groups 51, 52 and 53 by setting parameter 51.27 FBA par refresh to Refresh.

7. Set the relevant drive control parameters to control the drive according to the application.

Examples of appropriate values are shown in the tables below.

Parameter setting examples – ACS880

ABB Drives profile

The following example shows how to configure the ACS880 drive to use the ABB Drives profile.

The used I/O assembly instances are 902 and 952.

The table below gives the recommended drive parameter settings.

Drive parameter	Setting for ACS880 drives	Description
50.01 FBA A enable	1 = Enable	Enables communication between drive and adapter module.
50.04 FBA A ref1 type	4 = Speed	Selects speed as the fieldbus A reference 1 type.
50.05 FBA A ref2 type	3 = Torque	Selects torque as the fieldbus A reference 2 type.
51.01 FBA type	DeviceNet ¹⁾	Displays the type of the adapter module.
51.02 MAC ID	6	Defines the MAC ID number of the adapter module.
51.03 Baud rate	0 = 125kbit/s	Sets the baud rate for the DeviceNet interface.
51.06 Output instance	902	Selects the ABB Drives profile with speed and torque plus drive parameters output instance.
51.07 Output num pars	10	Must always be set to 10. For exceptions, see <i>Appendix A</i> – <i>Varying the number of drive</i> <i>parameters</i> .
52.01 FBA data in1	1.7	Motor current - MSW
52.02 FBA data in2	0 = None	Motor current - LSW
52.03 FBA data in3	1.11	DC voltage - MSW
52.04 FBA data in4	0 = None	DC voltage - LSW
52.05 FBA data in5… 52.10 FBA data in10	0 = None	
53.01 FBA data out1	23.12	Acceleration time - MSW
53.02 FBA data out2	0 = None	Acceleration time - LSW
53.03 FBA data out3	23.13	Deceleration time - MSW
53.04 FBA data out4	0 = None	Deceleration time - LSW
53.05 FBA data out5 53.10 FBA data out10	0 = None	

Drive parameter	Setting for ACS880 drives	Description
51.27 FBA par refresh	1 = Configure	Validates the FDNA-01 configuration parameter settings.
19.11 Ext1/Ext2 selection	2 = MCW bit11: Ext	Selects FBA Control word bit 11 as
	ctrl	the source for the external control location EXT1/EXT2 selection.
19.12 Ext1 control mode 1	2 = MCW bit11: Ext ctrl loc	Selects speed control as the control mode 1 for external control location EXT1.
19.14 Ext2 control mode 1	3 = Torque	Selects torque control as the control mode 1 for external control location EXT2.
20.01 Ext1 commands	12 = Fieldbus A	Selects fieldbus interface A as the source of the start and stop commands for external control location EXT1.
20.06 Ext2 commands	12 = Fieldbus A	Selects fieldbus interface A as the source of the start and stop commands for external control location EXT2.
22.11 Speed ref1 selection	4 = FB A ref1	Selects fieldbus A reference 1 as the source for speed reference 1.
26.11 Torque ref1 selection	5 = FB A ref2	Selects fieldbus reference 2 as the source for torque reference 1.

2) Example

The start sequence for the parameter example above is given below.

Control word:

- 47Eh (1150 decimal) \rightarrow READY TO SWITCH ON
- 47Fh (1151 decimal) \rightarrow OPERATING (Speed mode)

or

C7Fh (3199 decimal) \rightarrow OPERATING (Torque mode)

ODVA AC/DC drive profile

The following example shows how to configure the ACS880 drive to use the ODVA AC/DC drive profile.

The used I/O assembly instances are 23 and 73.

The table below gives the recommended drive parameter settings.

Drive parameter	Setting for ACS880 drives	Description
50.01 FBA A enable	1 = Enable	Enables communication between drive and adapter module.
50.04 FBA A ref1 type	4 = Speed	Selects Speed as the fieldbus A reference 1 type.
50.05 FBA A ref2 type	3 = Torque	Selects Torque as the fieldbus A reference 2 type.
51.01 FBA type	DeviceNet ¹⁾	Displays the type of the adapter module.
51.02 MAC ID	6	Defines the MAC ID number of the adapter module.
51.03 Baud rate	0 = 125kbit/s	Sets the baud rate for the DeviceNet interface.
51.06 Output instance	23	Selects the ABB Drives profile with speed and torque plus drive parameters output instance.
51.07 Output num pars	10	Must always be set to 10. For exceptions, see <i>Appendix A</i> – <i>Varying the number of drive</i> <i>parameters</i> .
51.27 FBA par refresh	1 = Configure	Validates the FDNA-01 configuration parameter settings.
19.11 Ext1/Ext2 selection	3 = DI1	Selects digital input DI1 as the source for the external control location EXT1/EXT2selection.
19.12 Ext1 control mode 1	2 = Speed	Selects speed control as the control mode 1 for external control location EXT1.
19.14 Ext2 control mode 1	3 = Torque	Selects torque control as the control mode 1 for external control location EXT2.
20.01 Ext1 commands	12 = Fieldbus A	Selects fieldbus interface A as the source of the start and stop commands for external control location EXT1.

Drive parameter	Setting for ACS880 drives	Description
20.06 Ext2 commands	12 = Fieldbus A	Selects fieldbus interface A as the source of the start and stop commands for external control location EXT2.
22.11 Speed ref1 selection	4 = FB A ref1	Selects fieldbus A reference 1 as the source for speed reference 1.
26.11 Torque ref1 selection	5 = FB A ref2	Selects fieldbus reference 2 as the source for torque reference 1.

2) Example

Note: In this example, digital input DI1 has been configured to control whether to use the speed or torque control mode.

The start sequence for the parameter example above is given below.

Control word:

- 0h (0 decimal) → READY
- 1h (1 decimal) → ENABLED (Running forward)
- 2h (2 decimal) → ENABLED (Running reverse)

Configuring the master station

After the adapter module has been initialized by the drive, the master station must be prepared for communication with the module. An example of an Allen-Bradley® PLC is given below. If you are using another master system, refer to its documentation for more information.

The example can be applied to all drive types compatible with the module.

EDS files

The Electronic Data Sheet (EDS) files specify the properties of the device for the DeviceNet scanner. The DeviceNet scanner identifies the device by means of the product code, device type, and major revision attributes. For more information, see *Identity* object, class 01h on page 132.

To enable the use of different ABB drive types on the same DeviceNet network, a unique product code has been given to each drive type and application combination.

EDS files are available from the Document library (www.abb.com/drives).

Note: Only one EDS file with the same DeviceNet product code can be installed in the PLC at a time.

Configuring an Allen-Bradley® PLC

This example shows how to set up an Allen-Bradley CompactLogix PLC with a 1769-SDN DeviceNet Scanner to use a drive equipped with a FDNA-01 fieldbus adapter, using RSNetWorx and RSLogix 5000 to configure and control the network. Slight vendor-specific differences may exist when using other programs or master devices.

In this example, ACS880 is used as the drive.

- 1. Select and import the EDS file for the drive.
 - For example, ACS880_FDNA01_v2.23_eu.EDS. For more help on choosing the correct file, refer to ABB EDS Selection Guide delivered with the EDS files.

Note: Only one EDS file with the same Product ID can be installed in the PLC at a time.

2. Add a drive to the network in RSNetWorx for DeviceNet.

70 Start-up

3. Configure the device MAC address.

 Configure the DeviceNet Scanner. Add the drive to Scanlist and edit I/O parameters. Select Polled or Change of State/Cyclic. Then enter the input and output sizes of the I/O assemblies that are used (for example, for Basic Speed Control Assemblies 20 and 70, each size is set to 4 bytes.).

- 72 Start-up
- For convenience, you can also edit the Input and Output memory mappings. By default, the two 16-bit input words are mapped into a single 32-bit double word. It is more convenient to map them into separate double words. Output words can be mapped similarly.

- \Diamond
 - Download the scanner settings to the device in the online mode.
- Add your DeviceNet scanner to an RSLogix 5000 project. You should get new Controller Tags Local:<slot>:I and Local:<slot>:O. You can use them to access the data as mapped above:
 - Local:<slot>:O.Data[0] is the Control word
 - Local:<slot>:O.Data[1] is the Reference
 - Local:<slot>:I.Data[0] is the Status word
 - Local:<slot>:I.Data[1] is the Actual value **Note:** You may need to change the value of Local:<slot>:O.CommandRegister.Run or Local:<slot>:I.CommandRegister.Run to 1.

74 Start-up

7

Communication profiles

What this chapter contains

This chapter describes the communication profiles used in the communication between the DeviceNet network, the adapter module and the drive.

Communication profiles

Communication profiles are ways of conveying control commands (Control word, Status word, references and actual values) between the master station and the drive.

With the FDNA-01 module, the DeviceNet network may employ either the ODVAAC/DC drive profile or the ABB Drives profile. Both are converted to the native profile (eg, DCU or FBA) by the adapter module. In addition, two Transparent modes – for 16-bit and 32-bit words respectively – are available. With the Transparent modes, no data conversion takes place. The figure below illustrates the operation of the profiles:

The following sections describe the Control word, the Status word, references and actual values for the ODVA AC/DC drive and ABB Drives communication profiles. Refer to the drive manuals for details on the native profiles.

ODVA AC/DC drive profile

This section briefly describes the ODVA AC/DC drive profile. Additional information can be obtained at <u>www.odva.org</u>.

A DeviceNet node is modelled as a collection of abstract objects. Each object represents the interface to and behavior of a component within the product. The ODVA AC/DC drive profile defines a collection of objects suitable for the control of the AC and DC drives. The objects supported by the FDNA-01 DeviceNet adapter are listed in Class objects on page 107.

The objects are defined by:

- Service
- Class
- Instance
- Attribute
- Behavior.

For example, to set the drive speed reference, the Set_Attribute_Single service can be requested for the SpeedRef attribute of the AC/DC drive object class. The resulting behavior is that the reference speed of the drive is set to the requested value.

This is an example of explicit messaging, where each attribute of a class is set individually. While this is allowed, it is inefficient. Instead, implicit messaging using input and output assembly instances is recommended. Implicit messaging allows the DeviceNet Master to set or get predefined groups of attributes in a single message exchange. The assembly instances supported by the adapter module are listed and defined in Assembly objects on page 74.

ODVA output attributes

This section briefly describes the instances found in the output assemblies of the ODVA AC/DC drive profile. Note that all output assembly instances do not support all attributes listed here.

Run Forward & Run Reverse (Control supervisor object)

These attributes are used to assert run and stop commands to the Control supervisor object state machine according to the following Run/Stop event matrix. See State (Control supervisor object) on page 60.

RunFwd	RunRev	Trigger event	Run type
0	0	Stop	N/A
$0 \rightarrow 1$	0	Run	RunFwd
0	$0 \rightarrow 1$	Run	RunRev
$0 \rightarrow 1$	$0 \rightarrow 1$	No Action	N/A
1	1	No Action	N/A
$0 \rightarrow 1$	1	Run	RunRev
1	$1 \rightarrow 0$	Run	RunFwd

Fault Reset (Control supervisor object)

This attribute resets a drive fault on a transition from zero to one if the condition that caused the fault has been cleared.

Net Ctrl (Control supervisor object)

This attribute requests that the drive Run/Stop command is supplied locally (Net Ctrl = 0) or by the network (Net Ctrl = 1).

Net Ref (AC/DC drive object)

This attribute requests that the drive Speed and Torque References are supplied locally (Net Ref = 0) or by the network (Net Ref = 1).

Speed Reference (AC/DC drive object)

This attribute is the speed reference for the drive. The units are scaled by the Speed Scale attribute of the AC/DC drive object. See Table 4. for details.

Scalar mode

When the drive is operating in the scalar mode, the adapter module provides the drive with a frequency reference. The ODVA AC/DC drive profile uses rpm units for the Speed Reference. The drive frequency reference is calculated as follows:

$$Dfr = \frac{Osr \times Us \times Mf}{Mss}$$

where

Dfr = Drive frequency reference in Hz

Osr = ODVA Speed Reference

Us = ODVA speed unit (see 10 ODVA speed scale on page 40)

Mf = Motor nominal frequency in Hz

Mss = Motor synchronous speed in rpm (not motor nominal speed)

For example, for a 4-pole 60 Hz motor (Mss = 1800 rpm) with a unit of 1 rpm and an ODVA Speed Reference of 900, the drive frequency reference is:

$$Dfr = \frac{Osr \times Us \times Mf}{Mss} = \frac{900 \times 1 \text{ rpm} \times 60 \text{ Hz}}{1800 \text{ rpm}} = 30 \text{ Hz}$$

Vector mode

When the drive is operating in the vector mode, the adapter module provides the drive with a speed reference. The ODVA AC/DC drive profile uses rpm units for the speed reference. The drive speed reference is calculated as follows:

$$Dsr = Osr \times Us$$

where

Dsr = Drive Speed Reference in rpm

Osr = ODVA Speed Reference

Us = ODVA speed unit (see 10 ODVA speed scale on page 40)

For example, for an ODVA Speed Reference of 900 rpm with a unit of 0.5 rpm, the drive speed reference is:

 $Dsr = Osr \times Us = 900 \times 0.5rpm = 450rpm$

Torque Reference (AC/DC drive object)

This attribute is the torque reference for the drive. The units are scaled by the Torque Scale attribute of the AC/DC drive object. See Table 5. for details.

The adapter module provides the drive with a Torque Reference in percent of the motor nominal torque. The ODVA AC/DC drive profile uses Newton-meter (N·m) units for the Torque Reference. The drive torque reference is calculated as follows:

$$Dtr = \frac{100 \times Otr \times Ut}{Mt}$$

where

- Dtr = Drive torque reference in percent of motor nominal torque
- Otr = ODVA Torque Reference
- Ut = ODVA torque unit (see 11 ODVA torque scale on page 41)
- Mt = Motor nominal torque in Nm.

For example, for a 1000 Nm motor nominal torque with a unit of 1 Nm and an ODVA Torque Reference of 500, the drive torque reference is:

$$Dtr = \frac{100 \times Otr \times Ut}{Mt} = \frac{100 \times 500 \times 1Nm}{1000 Nm} = 50$$

ODVA input attributes

This section briefly describes the instances found in the input assemblies of the ODVA AC/DC drive profile. Note that all input assembly instances do not support all attributes listed here.

Faulted (Control supervisor object)

This attribute indicates that the drive has experienced a fault. The fault code may be read from the FaultCode attribute of the Control supervisor object.

Warning (Control supervisor object)

This attribute indicates that the drive is experiencing a warning condition. The warning code may be read from the WarnCode attribute of the Control supervisor object.

Running Forward (Control supervisor object)

This attribute indicates that the drive is running in the forward direction.

Running Reverse (Control supervisor object)

This attribute indicates that the drive is running in the reverse direction.

Ready (Control supervisor object)

This attribute indicates that the Control supervisor object state machine is in the Ready, Running or Stopping state. See State (Control supervisor object) on page 60.

Ctrl From Net (Control supervisor object)

This attribute indicates if the Run/Stop command is being supplied locally (Ctrl From Net = 0) or by the network (Ctrl From Net = 1).

Ref From Net (AC/DC drive object)

This attribute indicates if the Speed and Torque References are being supplied locally (Ref From Net = 0) or by the network (Ref From Net = 1).

At Reference (AC/DC drive object)

This attribute indicates that the drive is operating at the specified Speed or Torque Reference.

State (Control supervisor object)

This attribute indicates the current state of the Control supervisor object.

State	Description	State	Description
0	Vendor Specific	4	Enabled
1	Startup	5	Stopping
2	Not Ready	6	Fault Stop
3	Ready	7	Faulted

The ODVA state transition diagram is shown below:

Speed Actual (AC/DC drive object)

This attribute indicates the actual speed at which the drive is operating. The units are scaled by the SpeedScale attribute of the AC/DC drive object. See Table 4. for details.

Scalar mode

When the drive is operating in the scalar mode, the drive provides the adapter module with a frequency actual. The ODVA AC/DC drive profile uses rpm units for the speed actual. The ODVA Speed Actual is calculated as follows:

$$Osa = \frac{Dfa \times Mss}{Mf \times Us}$$

where

- Osa = ODVA Speed Actual
- Dfa = Drive frequency actual in Hz
- Us = ODVA speed unit (see 10 ODVA speed scale on page 40)
- Mf = Motor nominal frequency in Hz
- Mss = Motor synchronous speed in rpm (not motor nominal speed)

For example, for a 4 pole 60 Hz motor (Mss = 1800 rpm) with a unit of 1 rpm and a Drive frequency actual of 30 Hz, the ODVA Speed Actual is:

 $Osa = \frac{Dfa \times Mss}{Mf \times Us} = \frac{30Hz \times 1800rpm}{60Hz \times 1rpm} = 900$

Vector Mode

When the drive is operating in the vector mode, the drive provides the adapter module with a speed actual. The ODVAAC/DC drive profile uses rpm units for the speed actual. The ODVA Speed Actual is calculated as follows:

$$Osa = \frac{Dsa}{Us}$$

where

Dsa = Drive speed actual in rpm

Osa = ODVA Speed Actual

Us = ODVA speed unit (see 10 ODVA speed scale on page 40)

For example, for a drive speed actual of 900 rpm with a unit of 0.5 rpm, the ODVA Speed Actual is:

$$Osa = \frac{Dsa}{Us} = \frac{450 \text{ rpm}}{0.5 \text{ rpm}} = 900$$

Torque Actual (AC/DC drive object)

This attribute indicates the actual torque at which the drive is operating. The units are scaled by the Torque Scale attribute of the AC/DC drive object. See Table 5. for details.

The drive provides the adapter module with a torque actual in percent of the motor nominal torque. The ODVA AC/DC drive profile uses Newton-meter (N·m) units for the Torque Actual. The ODVA Torque Actual is calculated as follows:

$$Ota = \frac{Dta \times Mt}{100 \times Ut}$$

where

Dta = Drive torque actual in percent of motor nominal torque

Ota = ODVA Torque Actual

- Ut = ODVA torque unit (see 11 ODVA torque scale on page 41)
- Mt = Motor nominal torque in Nm

For example, for a 1000 Nm motor nominal torque with a unit of 1 Nm and a drive torque actual of 50%, the ODVA Torque Actual is:

 $\text{Ota} = \frac{\text{Dta} \times \text{Mt}}{100 \times \text{Ut}} = \frac{50 \times 1000 \text{ Nm}}{100 \times 1 \text{ Nm}} = 500$

ABB Drives communication profile

Control word and Status word

The Control word is the principal means for controlling the drive from a fieldbus system. It is sent by the fieldbus master station to the drive through the adapter module. The drive switches between its states according to the bit-coded instructions in the Control word, and returns status information to the master in the Status word.

The contents of the Control word and the Status word are detailed below. The drive states are presented on page 91.

Control word contents

The table below shows the contents of the Control word for the ABB Drives communication profile. The upper case boldface text refers to the states shown in the state machine on page 91.

Bit	Name	Value	STATE/Description
0	OFF1_	1	Proceed to READY TO OPERATE .
	CONTROL	0	Stop along currently active deceleration ramp. Proceed to OFF1 ACTIVE ; proceed to READY TO SWITCH ON unless other interlocks (OFF2, OFF3) are active.
1	OFF2_	1	Continue operation (OFF2 inactive).
	CONTROL	0	Emergency OFF, coast to stop. Proceed to OFF2 ACTIVE; proceed to SWITCH-ON INHIBITED.

Bit	Name	Value	STATE/Description
2	OFF3_	1	Continue operation (OFF3 inactive).
CONTROL		0	Emergency stop, stop within time defined with the drive parameter. Proceed to OFF3 ACTIVE; proceed to SWITCH-ON INHIBITED. Warning: Ensure motor and driven machine can be stopped using this stop mode.
3	INHIBIT_ OPERATION	1	Proceed to OPERATION ENABLED . Note: Run enable signal must be active; see drive documentation. If the drive is set to receive the Run enable signal from the fieldbus, this bit activates the signal.
		0	Inhibit operation. Proceed to OPERATION INHIBITED.
4	RAMP_OUT_ ZERO	1	Normal operation. Proceed to RFG: OUTPUT ENABLED.
		0	Force the Ramp Function Generator output to zero. Drive ramps to stop (current and DC voltage limits in force).
5	RAMP_HOLD	1	Enable ramp function. Proceed to RFG: ACCELERATOR ENABLED.
		0	Halt ramping (Ramp Function Generator output held).
6	RAMP_IN_ ZERO	1	Normal operation. Proceed to OPERATION. Note: This bit is effective only if the fieldbus interface is set as the source for this signal by drive parameters.
		0	Force the Ramp Function Generator input to zero.

Bit	Name	Value	STATE/Description
7	RESET	0=>1	Fault reset if an active fault exists. Proceed to SWITCH-ON INHIBITED . Note: This bit is effective only if the fieldbus interface is set as the source for this signal by drive parameters.
		0	Continue normal operation.
89	Drive specific (For infor	mation, see the drive documentation).
10	REMOTE_	1	Fieldbus control enabled.
	CMD	0	Control Word and reference not getting through to the drive, except for CW bits OFF1, OFF2 and OFF3.
11	EXT_CTRL_ LOC	1	Select External Control Location EXT2. Effective if the control location parameterized to be selected from the fieldbus.
		0	Select External Control Location EXT1. Effective if the control location parameterized to be selected from the fieldbus.
12 15	Reserved.		

Status word contents

The table below shows the contents of the Status word for the ABB Drives communication profile. The upper case boldface text refers to the states shown in the state machine on page 91.

Bit	Name	Value	STATE/Description		
0	RDY_ON	1	READY TO SWITCH ON.		
		0	NOT READY TO SWITCH ON.		
1	RDY_RUN	1	READY TO OPERATE.		
		0	OFF1 ACTIVE.		
2	RDY_REF	1	OPERATION ENABLED.		
		0	OPERATION INHIBITED.		
3	TRIPPED	1	FAULT.		
		0	No fault.		
4	OFF_2_STA	1	OFF2 inactive.		
		0	OFF2 ACTIVE.		
5	OFF_3_STA	1	OFF3 inactive.		
		0	OFF3 ACTIVE.		
6	SWC_ON_	1	SWITCH-ON INHIBITED.		
	INHIB	0	-		
7	ALARM	1	Warning/Alarm.		
		0	No warning/alarm.		
8	AT_ SETPOINT	1	OPERATION. Actual value equals reference = is within tolerance limits, ie, in speed control, speed error is 10% max. of nominal motor speed.		
		0	Actual value differs from reference = is outside tolerance limits.		
9	9 REMOTE 1 Drive control location: REMOTE (E EXT2).				
		0	Drive control location: LOCAL.		

Bit	Name	Value	STATE/Description
10	ABOVE_ LIMIT	1	Actual frequency or speed equals or exceeds the supervision limit (set by the drive parameter). Valid in both directions of rotation.
		0	Actual frequency or speed within supervision limit.
11	EXT_CTRL_ LOC	1	External Control Location EXT2 selected. Note concerning ACS880: This bit is effective only if the fieldbus interface is set as the target for this signal by drive parameters. User bit 0 selection (06.30).
		0	External Control Location EXT1 selected.
12	EXT_RUN_ ENABLE	1	External Run Enable signal received. Note concerning ACS880: This bit is effective only if the fieldbus interface is set as the target for this signal by drive parameters. User bit 1 selection (06.31).
		0	No External Run Enable signal received
13 14	Reserved.		
15	FBA_ERROR	1	Communication error detected by the fieldbus adapter module.
		0	Fieldbus adapter communication OK.

State machine

The state machine for the ABB Drives communication profile is shown below.

References

References are 16-bit signed two's complement integers. A negative reference indicates a reverse direction of rotation.

ABB drives can receive control information from multiple sources including analogue and digital inputs, the drive control panel and a communication module (for example, FDNA-01). To have the drive controlled through the fieldbus, the module must be defined as the source for control information, for example, reference.

Scaling

References are scaled as shown below.

Note: The values of REF1 MAX and REF2 MAX are set with drive parameters. See the drive documentation for further information.

In ACSM1, ACS850, ACQ810 and ACS880, the speed reference (REFx) in decimal (0...20000) corresponds to 0 ... 100% of the speed scaling value (as defined with a drive parameter, eg, ACS880 parameter 46.01 Speed scaling).

In ACS355, drive parameter REFx MIN may limit the actual minimum reference.

Actual values

Actual values are 16-bit signed two's complement integers containing information on the operation of the drive. A negative reference indicates a reverse direction of rotation. The functions to be monitored are selected with a drive parameter.

Scaling

Actual values are scaled as shown below.

Note: The values of REF1 MAX and REF2 MAX are set with drive parameters. See the drive documentation for further information.

94 Communication profiles

8

Communication protocol

What this chapter contains

This chapter describes the DeviceNet communication protocol for the adapter module and the configuration of the scanner. For detailed information on DeviceNet communication, refer to ODVA DeviceNet Specifications Release 2.0.

DeviceNet

DeviceNet is a protocol based on the CAN technology. CAN specifies the physical layer interface. DeviceNet specifies the wiring and the data transfer through CAN.

The FDNA-01 module is a device acting as a Group 2 only Server realizing the Predefined Master Slave Connection Set functionality. The Off-line Connection Set functionality and Unconnected Message Manager (UCMM) are not supported.

Object modeling and functional properties

One of the main features of DeviceNet is object modeling. A group of objects can be described with a Functional Profile. The FDNA-01 adapter module realizes the ODVA AC/DC drive Functional Profile with additional features.

Assembly objects

I/O assembly instances may also be referred to as Block Transfer of data. Intelligent devices realizing a Functional Profile, such as FDNA-01, have several objects. Since it is not possible to transmit more than one object data through a single connection, it is practical and more efficient to group attributes from different objects into a single I/O connection (for example, a polled connection) using the assembly object. The assembly object acts as a tool for grouping these attributes.

The assembly selections described above are, in fact, instances of the assembly object class. The FDNA-01 adapter module uses static assemblies (in other words, fixed groupings of different object data only). The following tables describe the assembly instances supported by the adapter module.

Basic speed control assembly

The Basic speed control assembly is defined by the ODVA AC/DC drive profile. The format of the output assembly is:

Instance 20												
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
0						Fault Reset		Run Fwd				
1												
2	Speed Reference (Low Byte)											
3	Speed	Refere	nce (Hig	h Byte)								

Instance 70												
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
0						Running1 (Fwd)		Faulted				
1												
2	Speed Actual (Low Byte)											
3	Speed	Actual	(High B	yte)								

Basic speed control plus drive parameters assembly

The Basic speed control plus drive parameters assembly, defined by ABB, adds configurable drive parameters to the Basic speed control assembly of the ODVA AC/DC drive profile.

Instance 120									
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0						Fault		Run	
						Reset		Fwd	
1									
2	Speed	Refere	nce (Lo	w Byte)					
3	Speed	Refere	nce (Hi	gh Byte)					
4	DATA	OUT 1 \	/alue (L	ow Byte	e)				
5	DATA	OUT 1 \	/alue (⊦	ligh Byte	e)				
6	DATA	OUT 2 \	/alue (L	ow Byte	e)				
7	DATA	OUT 2 \	/alue (⊦	ligh Byte	e)				
8	DATA	OUT 3 \	/alue (L	ow Byte	e)				
9	DATA	OUT 3 \	/alue (⊦	ligh Byte	e)				
10	DATA	OUT 4 \	/alue (L	ow Byte	e)				
11	DATA	OUT 4 \	/alue (⊦	ligh Byte	e)				
12	DATA	OUT 5 \	/alue (L	ow Byte	e)				
13	DATA	OUT 5 \	/alue (⊦	ligh Byte	e)				
14	DATA	OUT 6 \	/alue (L	ow Byte	e)				
15	DATA	OUT 6 \	/alue (⊦	ligh Byte	e)				
16	DATA	OUT 7 \	/alue (L	ow Byte	e)				
17	DATA	OUT 7 \	/alue (⊦	ligh Byte	e)				
18	DATA	OUT 8 \	/alue (L	ow Byte	e)				
19	DATA	OUT 8 \	/alue (⊦	ligh Byte	e)				
20	DATA	OUT 9 \	/alue (L	ow Byte	e)				

Instance 120											
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
21	DATA	OUT 9 \	/alue (⊦	ligh Byte	e)						
22	DATA OUT 10 Value (Low Byte)										
23	DATA	OUT 10	Value (High By	∕te)						

Instance 170									
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0						Running1 (Fwd)		Faulted	
1									
2	Speed	Actual	(Low By	/te)					
3	Speed	Actual	(High B	yte)					
4	DATA	IN 1 Val	ue (Low	/ Byte)					
5	DATA	IN 1 Val	ue (Hig	h Byte)					
6	DATA	IN 2 Val	ue (Low	/ Byte)					
7	DATA	IN 2 Val	ue (Hig	h Byte)					
8	DATA	IN 3 Val	ue (Low	/ Byte)					
9	DATA	IN 3 Val	ue (Hig	h Byte)					
10	DATA	IN 4 Val	ue (Low	/ Byte)					
11	DATA	IN 4 Val	ue (Hig	h Byte)					
12	DATA	IN 5 Val	ue (Low	/ Byte)					
13	DATA	IN 5 Val	ue (Hig	h Byte)					
14	DATA	IN 6 Val	ue (Low	/ Byte)					
15	DATA	IN 6 Val	ue (Hig	h Byte)					
16	DATA	DATA IN 7 Value (Low Byte)							
17	DATA	IN 7 Val	ue (Hig	h Byte)					
18	DATA	IN 8 Val	ue (Low	v Byte)					
19	DATA	IN 8 Val	ue (Hig	h Byte)					

Instance 170										
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
20	DATA	DATA IN 9 Value (Low Byte)								
21	DATA	DATA IN 9 Value (High Byte)								
22	DATA	DATA IN 10 Value (Low Byte)								
23	DATA	IN 10 Va	alue (Hi	gh Byte)					

Extended speed control assembly

The Extended speed control assembly is defined by the ODVA AC/DC drive profile. The format of the output assembly is:

Instance 21										
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0		NetRef	NetCtrl			Fault Reset	Run Rev	Run Fwd		
1										
2	Speed Reference (Low Byte)									
3	Speed	Reference	ce (High I	3yte)						

Instance 71										
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0	At Refer- ence	Ref From Net	Ctrl From Net	Ready	Run- ning2 (Rev)	Run- ning1 (Fwd)	Warn- ing	Faulted		
1	Drive S	Drive State (See section State (Control supervisor object).)								
2	Speed Actual (Low Byte)									
3	Speed	Actual (High B	yte)						

Extended speed control plus drive parameters assembly

The Extended speed control plus drive parameters assembly, defined by ABB, adds configurable drive parameters to the Extended speed control assembly of the ODVA AC/DC drive profile.

Instance 121											
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0		NetRef	NetCtrl			Fault Reset	Run Rev	Run Fwd			
1											
2	Spood	Poforon		(vto)							
2	Speed	Deference									
3	Speed	Relefent		Syle)							
4	DAIA	OUT 1 Va	ilue (Low	Byte)							
5	DATA	OUT 1 Va	llue (High	i Byte)							
6	DATA	OUT 2 Va	lue (Low	Byte)							
7	DATA	OUT 2 Va	lue (High	Byte)							
8	DATA	OUT 3 Va	lue (Low	Byte)							
9	DATA	OUT 3 Va	lue (High	Byte)							
10	DATA	OUT 4 Va	lue (Low	Byte)							
11	DATA	OUT 4 Va	lue (High	Byte)							
12	DATA	OUT 5 Va	lue (Low	Byte)							
13	DATA	OUT 5 Va	lue (High	Byte)							
14	DATA	OUT 6 Va	lue (Low	Byte)							
15	DATA	OUT 6 Va	lue (High	Byte)							
16	DATA	DATA OUT 7 Value (Low Byte)									
17	DATA	DATA OUT 7 Value (High Byte)									
18	DATA	DATA OUT 8 Value (Low Byte)									
19	DATA	DATA OUT 8 Value (High Byte)									
20	DATA	OUT 9 Va	lue (Low	Byte)							

Instance 121										
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
21	DATA	DATA OUT 9 Value (High Byte)								
22	DATA	DATA OUT 10 Value (Low Byte)								
23	DATA	OUT 10 V	/alue (Hig	gh Byte)					

Instance 171									
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0	At Refer- ence	Ref From Net	Ctrl From Net	Ready	Run- ning2 (Rev)	Run- ning1 (Fwd)	Warn- ing	Faulted	
1	Drive S	tate (Se	e sectio	on <u>State</u>	(Control	supervis	or object).)	
2	Speed	Actual (I	Low By	te)					
3	Speed	Actual (I	High By	rte)					
4	DATA II	N 1 Valu	ie (Low	Byte)					
5	DATA II	N 1 Valu	ie (High	Byte)					
6	DATA II	N 2 Valu	ie (Low	Byte)					
7	DATA II	N 2 Valu	ie (High	Byte)					
8	DATA II	N 3 Valu	ie (Low	Byte)					
9	DATA II	N 3 Valu	ie (High	Byte)					
10	DATA II	N 4 Valu	ie (Low	Byte)					
11	DATA II	N 4 Valu	ie (High	Byte)					
12	DATA II	N 5 Valu	ie (Low	Byte)					
13	DATA II	N 5 Valu	ie (High	Byte)					
14	DATA II	N 6 Valu	ie (Low	Byte)					
15	DATA IN 6 Value (High Byte)								
16	DATA IN 7 Value (Low Byte)								
17	DATA IN 7 Value (High Byte)								
18	DATA II	N 8 Valu	e (Low	Byte)					

Instance 171											
Byte	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0										
19	DATA II	DATA IN 8 Value (High Byte)									
20	DATA IN 9 Value (Low Byte)										
21	DATA II	DATA IN 9 Value (High Byte)									
22	DATA II	DATA IN 10 Value (Low Byte)									
23	DATA II	N 10 Va	lue (Hig	h Byte)							

Basic speed and torque control assembly

The Basic speed and torque control assembly is defined by the ODVA AC/DC drive profile. The format of the output assembly is:

Instance 22										
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0						Fault Reset		Run Fwd		
1										
2	Speed	Speed Reference (Low Byte)								
3	Speed	Speed Reference (High Byte)								
4	Torque Reference (Low Byte)									
5	Torque	e Refere	nce (Hig	gh Byte)					

The format of the input assembly is:

Instance 72										
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0						Run- ning1 (Fwd)		Faulted		
1										
2	Speed	Speed Actual (Low Byte)								
3	Speed Actual (High Byte)									
4	Torque Actual (Low Byte)									
5	Torque	e Actual	(High B	yte)						

Basic speed and torque control plus drive parameters assembly

The Basic speed and torque control plus drive parameters assembly, defined by ABB, adds configurable drive parameters to the Basic speed and torque control assembly of the ODVAAC/DC drive profile.

Instance 122										
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0						Fault Reset		Run Fwd		
1										
2	Speed	Referen	ce (Lov	v Byte)						
3	Speed Reference (High Byte)									
4	Torque	Referer	ice (Lov	w Byte)						
5	Torque	Referer	ice (Hig	h Byte)						
6	DATA C	UT 1 V	alue (Lo	ow Byte)						
7	DATA OUT 1 Value (High Byte)									
8	DATA OUT 2 Value (Low Byte)									
9	DATA C	UT 2 Va	alue (Hi	igh Byte)						

Instan	Instance 122										
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
10	DATA C	DATA OUT 3 Value (Low Byte)									
11	DATA C	DUT 3 Va	alue (Hi	gh Byte)							
12	DATA C	DATA OUT 4 Value (Low Byte)									
13	DATA C	DUT 4 Va	alue (Hi	gh Byte)							
14	DATA C	DUT 5 Va	alue (Lo	ow Byte)							
15	DATA C	DUT 5 Va	alue (Hi	gh Byte)							
16	DATA C	DUT 6 Va	alue (Lo	ow Byte)							
17	DATA C	DUT 6 Va	alue (Hi	gh Byte)							
18	DATA C	DUT 7 Va	alue (Lo	ow Byte)							
19	DATA C	DUT 7 Va	alue (Hi	gh Byte)							
20	DATA C	DUT 8 Va	alue (Lo	ow Byte)							
21	DATA C	DUT 8 Va	alue (Hi	gh Byte)							
22	DATA C	DUT 9 Va	alue (Lo	ow Byte)							
23	DATA C	DATA OUT 9 Value (High Byte)									
24	DATA C	DATA OUT 10 Value (Low Byte)									
25	DATA C	OUT 10	Value (H	ligh Byte	e)						

Instance 172										
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0						Run- ning1 (Fwd)		Faulted		
1										
2	Speed	Actual (I	_ow By	te)						
3	Speed	Speed Actual (High Byte)								
4	Torque Actual (Low Byte)									
5	Torque Actual (High Byte)									

Instance 172											
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
6	DATA IN 1 Value (Low Byte)										
7	DATA IN 1 Value (High Byte)										
8	DATA II	N 2 Valu	e (Low	Byte)							
9	DATA II	N 2 Valu	ie (High	Byte)							
10	DATA II	N 3 Valu	e (Low	Byte)							
11	DATA II	N 3 Valu	ie (High	Byte)							
12	DATA II	N 4 Valu	e (Low	Byte)							
13	DATA II	N 4 Valu	ie (High	Byte)							
14	DATA II	N 5 Valu	e (Low	Byte)							
15	DATA II	N 5 Valu	ie (High	Byte)							
16	DATA II	N 6 Valu	e (Low	Byte)							
17	DATA II	N 6 Valu	ie (High	Byte)							
18	DATA II	N 7 Valu	ie (Low	Byte)							
19	DATA II	N 7 Valu	ie (High	Byte)							
20	DATA II	N 8 Valu	ie (Low	Byte)							
21	DATA II	N 8 Valu	ie (High	Byte)							
22	DATA II	N 9 Valu	ie (Low	Byte)							
23	DATA II	N 9 Valu	ie (High	Byte)							
24	DATA II	N 10 Va	lue (Lov	v Byte)							
25	DATA II	N 10 Va	lue (Hig	h Byte)							

Extended speed and torque control assembly

The Extended speed and torque control assembly is defined by the ODVA AC/DC drive profile. The format of the output assembly is:

Instance 23											
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0		NetRef	NetCtrl			Fault Reset	Run Rev	Run Fwd			
1											
2	Speed Reference (Low Byte)										
3	Speed Reference (High Byte)										
4	Torque Reference (Low Byte)										
5	Torque	Referen	ce (High I	Byte)							

Instance 73											
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0	At Refer- ence	Ref From Net	Ctrl From Net	Ready	Run- ning2 (Rev)	Run- ning1 (Fwd)	Warn- ing	Faulted			
1	Drive S	tate (Se	e sectio	on State	(Control	superviso	or object).)				
2	Speed Actual (Low Byte)										
3	Speed Actual (High Byte)										
4	Torque Actual (Low Byte)										
5	Torque	Actual (High By	vte)							

Extended speed and torque control plus drive parameters assembly

The Extended speed and torque control plus drive parameters assembly, defined by ABB, adds configurable drive parameters to the Extended speed and torque control assembly of the ODVA AC/DC drive profile.

Instance 123									
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0		NetRef	NetCtrl			Fault Reset	Run Rev	Run Fwd	
1									
2	Speed	d Referen	ice (Low	Byte)					
3	Speed	d Referen	ice (High	Byte)					
4	Torqu	e Referer	nce (Low	Byte)					
5	Torque	e Referer	nce (High	Byte)					
6	DATA	OUT 1 V	alue (Low	v Byte)					
7	DATA	OUT 1 V	alue (Hig	h Byte)					
8	DATA	OUT 2 V	alue (Low	v Byte)					
9	DATA	OUT 2 V	alue (Hig	h Byte)					
10	DATA	OUT 3 V	alue (Low	v Byte)					
11	DATA	OUT 3 V	alue (Hig	h Byte)					
12	DATA	OUT 4 V	alue (Low	/ Byte)					
13	DATA	OUT 4 V	alue (Hig	h Byte)					
14	DATA	OUT 5 V	alue (Low	/ Byte)					
15	DATA	OUT 5 V	alue (Hig	h Byte)					
16	DATA	OUT 6 V	alue (Low	v Byte)					
17	DATA	OUT 6 V	alue (Hig	h Byte)					
18	DATA	OUT 7 V	alue (Low	v Byte)					
19	DATA	OUT 7 V	alue (Hig	h Byte)					
20	DATA	OUT 8 V	alue (Low	v Byte)					

Instance 123											
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
21	DATA OUT 8 Value (High Byte)										
22	DATA OUT 9 Value (Low Byte)										
23	DATA OUT 9 Value (High Byte)										
24	DATA OUT 10 Value (Low Byte)										
25	DATA	OUT 10	Value (Hi	gh Byte)						

Instance 173										
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0	At Refer- ence	Ref From Net	Ctrl From Net	Ready	Run- ning2 (Rev)	Run- ning1 (Fwd)	Warn- ing	Faulted		
1	Drive S	tate (Se	e sectio	on State ((Control :	superviso	or object).)		
2	Speed	Actual (I	_ow Byt	e)						
3	Speed	Actual (I	High By	te)						
4	Torque	Actual (Low By	te)						
5	Torque	Actual (High By	vte)						
6	DATA IN 1 Value (Low Byte)									
7	DATA IN 1 Value (High Byte)									
8	DATA II	N 2 Valu	e (Low	Byte)						
9	DATA II	N 2 Valu	e (High	Byte)						
10	DATA II	N 3 Valu	e (Low	Byte)						
11	DATA II	N 3 Valu	e (High	Byte)						
12	DATA II	N 4 Valu	e (Low	Byte)						
13	DATA II	N 4 Valu	e (High	Byte)						
14	DATA II	N 5 Valu	e (Low	Byte)						
15	DATA II	N 5 Valu	e (High	Byte)						
16	DATA II	N 6 Valu	e (Low	Byte)						
Insta	nce 173									
-------	---------	-----------------------------	---------	---------	-------	-------	-------	-------	--	--
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
17	DATA II	N 6 Valu	e (High	Byte)						
18	DATA II	N 7 Valu	e (Low	Byte)						
19	DATA II	N 7 Valu	e (High	Byte)						
20	DATA II	N 8 Valu	e (Low	Byte)						
21	DATA II	N 8 Valu	e (High	Byte)						
22	DATA II	N 9 Valu	e (Low	Byte)						
23	DATA II	DATA IN 9 Value (High Byte)								
24	DATA II	N 10 Val	ue (Lov	v Byte)						
25	DATA II	N 10 Val	ue (Hig	h Byte)						

ABB Drives profile with set speed assembly

The ABB Drives profile with set speed assembly is defined by	
ABB. The format of the output assembly is:	

Insta	Instance 801											
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
0	Reset	Ramp in Zero	Ramp Hold	Ramp Out Zero	Inhibit Oper- ation	Off 3 Control	Off 2 Control	Off 1 Control				
1					Ext Ctrl Loc	Remote Cmd						
2	Set Speed (Low Byte)											
3	Set Sp	eed (Hig	h Byte)									

110 Communication protocol

The format of the input assembly is:

Insta	Instance 851											
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
0	Alarm	Swc On Inhib	Off 3 Sta	Off 2 Sta	Tripped	Rdy Ref	Rdy Run	Rdy On				
1	Field- bus Error			Ext Run Enable	Ext Ctrl Loc	Above Limit	Re- mote	At Set- point				
2	Actual Speed (Low Byte)											
3	Actual	Speed (High By	te)								

ABB Drives profile with set speed plus drive parameters assembly

The ABB Drives profile with set speed plus drive parameters assembly, defined by ABB, adds configurable drive parameters to the ABB Drives profile with set speed of the ABB Drives Profile.

Instan	ce 901											
Byte	Bit 7	Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0										
0	Reset	Ramp in Zero	Ramp Hold	Ramp Out Zero	Inhibit Oper ation	Off 3 Control	Off 2 Con- trol	Off 1 Con- trol				
1					Ext Ctrl Loc	Remote Cmd						
2	Set Sp	eed (Lov	w Byte)									
3	Set Sp	eed (Hig	h Byte)									
4	DATA (DUT 1 V	alue (Lo	w Byte)								
5	DATA (DUT 1 V	alue (Hię	gh Byte)								
6	DATA (DATA OUT 2 Value (Low Byte)										
7	DATA (DUT 2 V	alue (Hi	gh Byte)								
8	DATA (DUT 3 V	alue (Lo	w Byte)								

Instan	ce 901										
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
9	DATA (OUT 3 V	alue (Hi	gh Byte)							
10	DATA	OUT 4 V	alue (Lo	w Byte)							
11	DATA	OUT 4 V	alue (Hi	gh Byte)							
12	DATA	OUT 5 V	alue (Lo	w Byte)							
13	DATA	OUT 5 V	alue (Hi	gh Byte)							
14	DATA	OUT 6 V	alue (Lo	w Byte)							
15	DATA	OUT 6 V	alue (Hi	gh Byte)							
16	DATA (OUT 7 V	alue (Lo	w Byte)							
17	DATA (OUT 7 V	alue (Hi	gh Byte)							
18	DATA (OUT 8 V	alue (Lo	w Byte)							
19	DATA (OUT 8 V	alue (Hi	gh Byte)							
20	DATA (OUT 9 V	alue (Lo	w Byte)							
21	DATA (DATA OUT 9 Value (High Byte)									
22	DATA	OUT 10	Value (L	ow Byte)						
23	DATA	OUT 10	Value (H	ligh Byte)						

Instan	Instance 951											
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
0	Alarm	Swc On Inhib	Off 3 Sta	Off 2 Sta	Tripped	Rdy Ref	Rdy Run	Rdy On				
1	Field- bus Error			Ext Run Enable	Ext Ctrl Loc	Above Limit	Remote	At Set- point				
2	Actual	Speed (Low By	te)								
3	Actual	Speed (High By	/te)								
4	DATA I	N 1 Valu	ue (Low	Byte)								
5	DATA I	N 1 Valu	ue (High	Byte)								

Instan	ce 951									
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
6	DATA I	N 2 Valu	ue (Low	Byte)						
7	DATA I	N 2 Valu	ue (Higł	n Byte)						
8	DATA I	N 3 Valu	ue (Low	Byte)						
9	DATA I	N 3 Valu	ue (High	n Byte)						
10	DATA I	N 4 Valu	ue (Low	Byte)						
11	DATA I	N 4 Valu	ue (High	n Byte)						
12	DATA I	N 5 Valu	le (Low	Byte)						
13	DATA I	N 5 Valu	ue (High	n Byte)						
14	DATA I	N 6 Valu	ue (Low	Byte)						
15	DATA I	N 6 Valu	ue (High	n Byte)						
16	DATA I	N 7 Valu	ue (Low	Byte)						
17	DATA I	N 7 Valu	ue (High	n Byte)						
18	DATA I	N 8 Valu	ue (Low	Byte)						
19	DATA I	N 8 Valu	ue (High	n Byte)						
20	DATA I	N 9 Valu	ue (Low	Byte)						
21	DATA I	DATA IN 9 Value (High Byte)								
22	DATA I	N 10 Va	lue (Lo	w Byte)						
23	DATA I	N 10 Va	lue (Hig	gh Byte)						

ABB Drives profile with set speed and set torque assembly

The ABB Drives profile with set speed and set torque assembly is defined by ABB. The format of the output assembly is:

Insta	Instance 802										
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0	Reset	Ramp in Zero	Ramp Hold	Ramp Out Zero	Inhibit Oper- ation	Off 3 Control	Off 2 Control	Off 1 Con- trol			
1					Ext Ctrl Loc	Remote Cmd					
2	Set Sp	eed (Lov	v Byte)								
3	Set Sp	Set Speed (High Byte)									
4	Set Tor	que (Lov	v Byte)								
5	Set Tor	que (Hig	h Byte)								

Instar	nce 852							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	Alarm	Swc On Inhib	Off 3 Sta	Off 2 Sta	Tripped	Rdy Ref	Rdy Run	Rdy On
1	Field- bus Error			Ext Run Enable	Ext Ctrl Loc	Above Limit	Remote	At Set- point
2	Actual	Speed (Low By	∕te)				
3	Actual Speed (High Byte)							
4	Actual -	Torque	(Low B	yte)				
5	Actual	Torque	(High B	syte)				

ABB Drives profile with set speed and set torque plus drive parameters assembly

The ABB Drives profile with set speed and set torque plus drive parameters assembly, defined by ABB, adds configurable drive parameters to the ABB Drives profile with set speed and set torque of the ABB Drives Profile.

Instar	nce 902									
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0	Reset	Ramp in Zero	Ramp Hold	Ramp Out Zero	Inhibit Opera- tion	Off 3 Control	Off 2 Con- trol	Off 1 Con- trol		
1					Ext Ctrl Loc	Remote Cmd				
2	Set Spe	eed (Low	v Byte)							
3	Set Spe	eed (Higl	n Byte)							
4	Set Tor	que (Lov	v Byte)							
5	Set Tor	que (Hig	h Byte)							
6	DATA C	OUT 1 Va	lue (Lov	v Byte)						
7	DATA C	OUT 1 Va	lue (Hig	h Byte)						
8	DATA C	OUT 2 Va	lue (Lov	v Byte)						
9	DATA C	OUT 2 Va	lue (Hig	h Byte)						
10	DATA C	OUT 3 Va	lue (Lov	v Byte)						
11	DATA C	OUT 3 Va	lue (Hig	h Byte)						
12	DATA C	OUT 4 Va	lue (Lov	v Byte)						
13	DATA C	OUT 4 Va	lue (Hig	h Byte)						
14	DATA C	OUT 5 Va	lue (Lov	v Byte)						
15	DATA OUT 5 Value (High Byte)									
16	DATA C	DATA OUT 6 Value (Low Byte)								
17	DATA C	OUT 6 Va	lue (Hig	h Byte)						
18	DATA C	DUT 7 Va	lue (Lov	v Byte)						

Instar	Instance 902										
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
19	DATA C	UT 7 Va	lue (Hig	h Byte)							
20	DATA C	UT 8 Va	lue (Lov	v Byte)							
21	DATA C	UT 8 Va	lue (Hig	h Byte)							
22	DATA C	OUT 9 Va	lue (Lov	v Byte)							
23	DATA C	OUT 9 Va	lue (Hig	h Byte)							
24	DATA C	OUT 10 V	alue (Lo	w Byte)							
25	DATA C	OUT 10 V	/alue (Hi	gh Byte))						

Instance 952										
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0	Alarm	Swc On Inhib	Off 3 Sta	Off 2 Sta	Tripped	Rdy Ref	Rdy Run	Rdy On		
1	Field- bus Error			Ext Run Enable	Ext Ctrl Loc	Above Limit	Remote	At Set- point		
2	Actual	Speed (L	.ow Byt	e)						
3	Actual	Speed (H	High By	te)						
4	Actual ⁻	Torque (I	Low Byt	te)						
5	Actual ⁻	Torque (I	High By	te)						
6	DATA II	N 1 Valu	e (Low	Byte)						
7	DATA II	N 1 Valu	e (High	Byte)						
8	DATA II	N 2 Valu	e (Low	Byte)						
9	DATA II	N 2 Valu	e (High	Byte)						
10	DATA II	N 3 Valu	e (Low	Byte)						
11	DATA IN 3 Value (High Byte)									
12	DATA II	N 4 Valu	e (Low	Byte)						
13	DATA II	N 4 Valu	e (High	Byte)						

Instar	nce 952									
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
14	DATA II	N 5 Valu	e (Low	Byte)						
15	DATA II	N 5 Valu	e (High	Byte)						
16	DATA II	N 6 Valu	e (Low	Byte)						
17	DATA II	N 6 Valu	e (High	Byte)						
18	DATA II	DATA IN 7 Value (Low Byte)								
19	DATA II	N 7 Valu	e (High	Byte)						
20	DATA II	N 8 Valu	e (Low	Byte)						
21	DATA II	N 8 Valu	e (High	Byte)						
22	DATA II	N 9 Valu	e (Low	Byte)						
23	DATA II	DATA IN 9 Value (High Byte)								
24	DATA II	DATA IN 10 Value (Low Byte)								
25	DATA II	N 10 Val	ue (Higl	n Byte)						

Transparent 16 with one assembly

The Transparent 16 with one assembly, defined by ABB, provides unaltered 16-bit access to the configured drive profile.

Instance 811											
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0	Drive F	Drive Profile 16-bit Control word (Low Byte)									
1	Drive F	Drive Profile 16-bit Control word (High Byte)									
2	Drive F	Drive Profile 16-bit Reference 1 word (Low Byte)									
3	Drive F	Profile 16	-bit Refe	erence 1	word (H	ligh Byte)					

Instance 861											
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0	Drive F	Drive Profile 16-bit Status word (Low Byte)									
1	Drive Profile 16-bit Status word (High Byte)										
2	Drive Profile 16-bit Actual 1 word (Low Byte)										
3	Drive F	Profile 16	-bit Actu	al 1 wor	d (High	Byte)					

Transparent 16 with one assembly plus drive parameters

The Transparent 16 with one assembly plus drive parameters, defined by ABB, adds configurable drive parameters to the Transparent 16 with one assembly.

Instan	Instance 911										
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0	Drive F	Profile 16	-bit Cor	ntrol word	d (Low B	yte)					
1	Drive F	Profile 16	i-bit Cor	ntrol word	d (High E	Byte)					
2	Drive F	Profile 16	i-bit Ref	erence 1	word (L	ow Byte)					
3	Drive F	Profile 16	i-bit Ref	erence 1	word (H	ligh Byte)					
4	DATA (OUT 1 V	alue (Lo	w Byte)							
5	DATA (OUT 1 V	alue (Hi	gh Byte)							
6	DATA (OUT 2 V	alue (Lo	w Byte)							
7	DATA (OUT 2 V	alue (Hi	gh Byte)							
8	DATA (OUT 3 V	alue (Lo	w Byte)							
9	DATA (OUT 3 V	alue (Hi	gh Byte)							
10	DATA (OUT 4 V	alue (Lo	w Byte)							
11	DATA (OUT 4 V	alue (Hi	gh Byte)							
12	DATA (OUT 5 V	alue (Lo	w Byte)							
13	DATA (OUT 5 V	alue (Hi	gh Byte)							

Instance 911										
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
14	DATA (OUT 6 V	alue (Lo	w Byte)						
15	DATA (DUT 6 V	alue (Hi	gh Byte)						
16	DATA (OUT 7 V	alue (Lo	w Byte)						
17	DATA (OUT 7 V	alue (Hi	gh Byte)						
18	DATA (OUT 8 V	alue (Lo	w Byte)						
19	DATA (OUT 8 V	alue (Hi	gh Byte)						
20	DATA (OUT 9 V	alue (Lo	w Byte)						
21	DATA (OUT 9 V	alue (Hi	gh Byte)						
22	DATA (DATA OUT 10 Value (Low Byte)								
23	DATA (OUT 10	Value (H	ligh Byte)					

Instan	Instance 961										
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0	Drive F	Profile 16	6-bit Sta	tus word	(Low By	/te)					
1	Drive F	Drive Profile 16-bit Status word (High Byte)									
2	Drive F	Profile 16	3-bit Actu	ual 1 wor	rd (Low E	3yte)					
3	Drive F	Profile 16	3-bit Actu	ual 1 wor	d (High	Byte)					
4	DATA I	N 1 Valu	ie (Low	Byte)							
5	DATA I	N 1 Valu	ıe (High	Byte)							
6	DATA I	N 2 Valu	ie (Low	Byte)							
7	DATA I	N 2 Valu	ıe (High	Byte)							
8	DATA I	N 3 Valu	ie (Low	Byte)							
9	DATA I	N 3 Valu	ıe (High	Byte)							
10	DATA I	N 4 Valu	ie (Low	Byte)							
11	DATA I	DATA IN 4 Value (High Byte)									
12	DATA I	DATA IN 5 Value (Low Byte)									
13	DATA I	N 5 Valu	ıe (High	Byte)							

Instance 961											
Byte	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0									
14	DATA I	N 6 Valu	e (Low	Byte)							
15	DATA I	N 6 Valu	e (High	Byte)							
16	DATA I	N 7 Valu	e (Low	Byte)							
17	DATA I	N 7 Valu	e (High	Byte)							
18	DATA I	N 8 Valu	e (Low	Byte)							
19	DATA I	N 8 Valu	e (High	Byte)							
20	DATA I	N 9 Valu	e (Low	Byte)							
21	DATA I	N 9 Valu	e (High	Byte)							
22	DATA I	DATA IN 10 Value (Low Byte)									
23	DATA I	N 10 Va	ue (Hig	h Byte)							

Transparent 16 with two assembly

The Transparent 16 with two assembly, defined by ABB, provides unaltered 16-bit access to the configured drive profile.

Instance 812											
Byte	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0									
0	Drive P	Profile 16	-bit Cont	trol word	(Low By	yte)					
1	Drive P	Profile 16	-bit Cont	trol word	(High B	yte)					
2	Drive P	Drive Profile 16-bit Reference 1 word (Low Byte)									
3	Drive P	Profile 16	-bit Refe	erence 1	word (H	igh Byte)					
4	Drive Profile16-bit Reference 2 word (Low Byte)										
5	Drive P	Profile 16	-bit Refe	erence 2	word (H	igh Byte)					

Instance 862											
Byte	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0									
0	Drive F	Drive Profile 16-bit Status word (Low Byte)									
1	Drive F	Drive Profile 16-bit Status word (High Byte)									
2	Drive F	Drive Profile 16-bit Actual 1 word (Low Byte)									
3	Drive F	rofile 16	-bit Actu	al 1 wor	d (High I	Byte)					
4	Drive F	Drive Profile16-bit Actual 2 word (Low Byte)									
5	Drive F	Profile 16	-bit Actu	al 2 wor	d (High I	Byte)					

Transparent 16 with two assembly plus drive parameters

The Transparent 16 with two assembly plus drive parameters, defined by ABB, adds configurable drive parameters to the Transparent 16 with two assembly.

Instance 912										
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0	Drive P	rofile 16-	bit Cont	rol word (Low Byte	e)				
1	Drive P	Drive Profile 16-bit Control word (High Byte)								
2	Drive P	rofile 16-	bit Refe	rence 1 v	vord (Lov	v Byte)				
3	Drive P	rofile 16-	bit Refe	rence 1 v	vord (Hig	h Byte)				
4	Drive P	rofile 16-	bit Refe	rence 2 v	vord (Lov	v Byte)				
5	Drive P	rofile 16-	bit Refe	rence 2 v	vord (Hig	h Byte)				
6	DATA C	OUT 1 Va	lue (Lov	v Byte)						
7	DATA C	OUT 1 Va	lue (Hig	h Byte)						
8	DATA C	OUT 2 Va	lue (Lov	v Byte)						
9	DATA C	DATA OUT 2 Value (High Byte)								
10	DATA C	OUT 3 Va	lue (Lov	v Byte)						
11	DATA C	OUT 3 Va	lue (Hig	h Byte)						

Instance 912											
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
12	DATA C	OUT 4 Va	lue (Low	v Byte)							
13	DATA C	OUT 4 Va	lue (Hig	h Byte)							
14	DATA C	OUT 5 Va	lue (Low	v Byte)							
15	DATA C)UT 5 Va	lue (Hig	h Byte)							
16	DATA C	OUT 6 Va	lue (Low	v Byte)							
17	DATA C	OUT 6 Va	lue (Hig	h Byte)							
18	DATA C	OUT 7 Va	lue (Low	v Byte)							
19	DATA C	OUT 7 Va	lue (Hig	h Byte)							
20	DATA C	OUT 8 Va	lue (Low	v Byte)							
21	DATA C	OUT 8 Va	lue (Hig	h Byte)							
22	DATA C	OUT 9 Va	lue (Low	v Byte)							
23	DATA C	DATA OUT 9 Value (High Byte)									
24	DATA C	DATA OUT 10 Value (Low Byte)									
25	DATA C	OUT 10 V	alue (Hi	gh Byte)							

Instar	Instance 962										
Byte	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0									
0	Drive P	rofile 16-	bit Statu	ıs word (l	_ow Byte)					
1	Drive P	rofile 16-	bit Statu	ıs word (l	High Byte	e)					
2	Drive P	rofile 16-	bit Actua	al 1 word	(Low By	te)					
3	Drive P	rofile 16-	bit Actua	al 1 word	(High By	vte)					
4	Drive P	rofile 16-	bit Actua	al 2 word	(Low By	te)					
5	Drive P	rofile 16-	bit Actua	al 2 word	(High By	∕te)					
6	DATA II	N 1 Value	e (Low B	syte)							
7	DATA II	DATA IN 1 Value (High Byte)									
8	DATA II	DATA IN 2 Value (Low Byte)									
9	DATA II	N 2 Value	e (High E	Byte)							

Instance 962										
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
10	DATA II	N 3 Value	e (Low B	Byte)						
11	DATA II	N 3 Value	e (High E	Byte)						
12	DATA II	N 4 Value	e (Low B	Byte)						
13	DATA II	N 4 Value	e (High E	Byte)						
14	DATA II	N 5 Value	e (Low B	Byte)						
15	DATA II	N 5 Value	e (High E	Byte)						
16	DATA II	N 6 Value	e (Low B	Byte)						
17	DATA II	N 6 Value	e (High E	Byte)						
18	DATA II	N 7 Value	e (Low B	Byte)						
19	DATA II	N 7 Value	e (High E	Byte)						
20	DATA II	N 8 Value	e (Low B	Byte)						
21	DATA II	N 8 Value	e (High E	Byte)						
22	DATA II	N 9 Value	e (Low B	Byte)						
23	DATA II	DATA IN 9 Value (High Byte)								
24	DATA IN 10 Value (Low Byte)									
25	DATA II	N 10 Valu	ue (High	Byte)						

Transparent 32 with one assembly

The Transparent 32 with one assembly, defined by ABB, provides unaltered 32-bit access to the configured drive profile.

The format of the output assembly is:

Insta	Instance 821											
Byte	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0										
0	Drive F	Profile 32	-bit Con	trol word	I (Low B	yte)						
1	Drive F	Profile 32	-bit Con	trol word								
2	Drive F	Profile 32	-bit Con	trol word								
3	Drive F	Profile 32	-bit Con	trol word	l (High B	Byte)						
4	Drive F	Profile 32	-bit Refe	erence 1	word (L	ow Byte)						
5	Drive F	Profile 32	-bit Refe	erence 1	word							
6	Drive Profile 32-bit Reference 1 word											
7	Drive F	Profile 32	-bit Refe	erence 1	word (H	ligh Byte)						

Instance 871												
Byte	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0										
0	Drive F	Profile 32	-bit Stat	us word	(Low By	rte)						
1	Drive F	Profile 32	-bit Stat	us word								
2	Drive F	Profile 32	-bit Stat	us word								
3	Drive F	Profile 32	-bit Stat	us word	(High B	yte)						
4	Drive F	Profile 32	-bit Actu	al 1 wor	d (Low E	Byte)						
5	Drive F	Profile 32	-bit Actu	al 1 wor	d							
6	Drive Profile 32-bit Actual 1 word											
7	Drive F	Profile 32	-bit Actu	al 1 wor	d (High	Byte)						

Transparent 32 with one assembly plus drive parameters

The Transparent 32 with one assembly plus drive parameters, defined by ABB, adds configurable drive parameters to the Transparent 32 with one assembly.

Instar	nce 921										
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0	Drive P	Drive Profile 32-bit Control word (Low Byte)									
1	Drive P	rofile 32-	bit Cont	rol word							
2	Drive P	rofile 32-	bit Cont	rol word							
3	Drive P	rofile 32-	bit Cont	rol word	(High By	te)					
4	Drive P	rofile 32-	bit Refe	rence 1 v	vord (Lov	v Byte)					
5	Drive P	rofile 32-	bit Refe	rence 1 v	vord						
6	Drive P	rofile 32-	bit Refe	rence 1 v	vord						
7	Drive P	rofile 32-	bit Refe	rence 1 v	vord (Hig	h Byte)					
8	DATA C	OUT 1 Va	lue (Lov	v Byte)							
9	DATAC	DUT 1 Va	lue (Hig	h Byte)							
10	DATAC	DUT 2 Va	lue (Lov	v Byte)							
11	DATAC	OUT 2 Va	lue (Hig	h Byte)							
12	DATAC	OUT 3 Va	lue (Lov	v Byte)							
13	DATAC	OUT 3 Va	lue (Hig	h Byte)							
14	DATAC	DUT 4 Va	lue (Lov	v Byte)							
15	DATAC	DUT 4 Va	lue (Hig	h Byte)							
16	DATAC	DUT 5 Va	lue (Lov	v Byte)							
17	DATAC	DUT 5 Va	lue (Hig	h Byte)							
18	DATAC	DUT 6 Va	lue (Lov	v Byte)							
19	DATAC	DUT 6 Va	lue (Hig	h Byte)							
20	DATA C	OUT 7 Va	lue (Lov	v Byte)							
21	DATAC	DUT 7 Va	lue (Hig	h Byte)							

Instance 921											
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
22	DATA C	OUT 8 Va	lue (Low	v Byte)							
23	DATA C	OUT 8 Va	lue (Hig	h Byte)							
24	DATA C	DATA OUT 9 Value (Low Byte)									
25	DATA C	OUT 9 Va	lue (Hig	h Byte)							
26	DATA C	DATA OUT 10 Value (Low Byte)									
27	DATA C	DUT 10 V	/alue (Hi	gh Byte)							

Instance 971												
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
0	Drive P	Drive Profile 32-bit Status word (Low Byte)										
1	Drive P	rofile 32-	bit Statu	is word								
2	Drive P	rofile 32-	bit Statu	is word								
3	Drive P	rofile 32-	bit Statu	is word (I	High Byte	e)						
4	Drive P	rofile 32-	bit Actu	al 1 word	(Low By	te)						
5	Drive P	rofile 32-	bit Actu	al 1 word	(High By	rte)						
6	Drive P	rofile 32-	bit Actua	al 1 word								
7	Drive P	rofile 32-	bit Actu	al 1 word	(High By	rte)						
8	DATA II	N 1 Value	e (Low B	syte)								
9	DATA II	N 1 Value	e (High E	Byte)								
10	DATA II	N 2 Value	e (Low B	syte)								
11	DATA II	N 2 Value	e (High E	Byte)								
12	DATA II	N 3 Value	e (Low B	syte)								
13	DATA II	N 3 Value	e (High E	Byte)								
14	DATA II	DATA IN 4 Value (Low Byte)										
15	DATA II	DATA IN 4 Value (High Byte)										
16	DATA II	DATA IN 5 Value (Low Byte)										
17	DATA II	N 5 Value	e (High E	Byte)								

Instance 971											
Byte	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0									
18	DATA II	N 6 Value	e (Low E	Byte)							
19	DATA II	N 6 Value	e (High B	Byte)							
20	DATA II	N 7 Value	e (Low E	Byte)							
21	DATA II	N 7 Value	e (High B	3yte)							
22	DATA II	N 8 Value	e (Low E	Byte)							
23	DATA II	N 8 Value	e (High B	3yte)							
24	DATA II	N 9 Value	e (Low E	Byte)							
25	DATA II	N 9 Value	e (High B	Byte)							
26	DATA II	DATA IN 10 Value (Low Byte)									
27	DATA II	N 10 Valu	ue (High	Byte)							

Transparent 32 with two assembly

The Transparent 32 with two assembly, defined by ABB, provides unaltered 32-bit access to the configured drive profile.

Instance 822												
Byte	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0										
0	Drive F	Profile 32	-bit Cont	trol word	l (Low B	yte)						
1	Drive F	Profile 32	-bit Cont	trol word								
2	Drive F	Profile 32	-bit Cont	trol word								
3	Drive F	Profile 32	-bit Cont	trol word	l (High E	Byte)						
4	Drive F	Profile 32	-bit Refe	erence 1	word (L	ow Byte)						
5	Drive F	Profile 32	-bit Refe	erence 1	word							
6	Drive Profile 32-bit Reference 1 word											
7	Drive F	Profile 32	-bit Refe	erence 1	word (H	ligh Byte)						

Insta	nce 822
8	Drive Profile 32-bit Reference 2 word (Low Byte)
9	Drive Profile 32-bit Reference 2 word
10	Drive Profile 32-bit Reference 2 word
11	Drive Profile 32-bit Reference 2 word (High Byte)

Insta	Instance 872										
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0	Drive P	Profile 32	-bit Stat	us word	(Low By	te)					
1	Drive P	Profile 32	-bit Stat	us word							
2	Drive P	Profile 32	-bit Stat	us word							
3	Drive P	Profile 32	-bit Stat	us word	(High By	∕te)					
4	Drive P	Profile 32	-bit Actu	al 1 wor	d (Low E	Byte)					
5	Drive P	Profile 32	-bit Actu	al 1 wor	d						
6	Drive P	Profile 32	-bit Actu	al 1 wor	d						
7	Drive P	Profile 32	-bit Actu	al 1 wor	d (High I	Byte)					
8	Drive P	Profile 32	-bit Actu	al 2 wor	d (Low E	Byte)					
9	Drive P	Drive Profile 32-bit Actual 2 word									
10	Drive P	Profile 32	-bit Actu	al 2 wor	d						
11	Drive P	Profile 32	-bit Actu	al 2 wor	d (High I	Byte)					

Transparent 32 with two assembly plus drive parameters

The Transparent 32 with two assembly plus drive parameters, defined by ABB, adds configurable drive parameters to the Transparent 32 with two assembly.

Instar	nce 922										
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0	Drive P	Drive Profile 32-bit Control word (Low Byte)									
1	Drive P	rofile 32-	bit Cont	rol word							
2	Drive P	rofile 32-	bit Cont	rol word							
3	Drive P	rofile 32-	bit Cont	rol word	(High By	te)					
4	Drive P	rofile 32-	bit Refe	rence 1 v	vord (Lov	v Byte)					
5	Drive P	rofile 32-	bit Refe	rence 1 v	vord						
6	Drive P	rofile 32-	bit Refe	rence 1 v	vord						
7	Drive P	rofile 32-	bit Refe	rence 1 v	vord (Hig	h Byte)					
8	Drive P	rofile 32-	bit Refe	rence 2 v	vord (Lov	v Byte)					
9	Drive P	rofile 32-	bit Refe	rence 2 v	vord						
10	Drive P	rofile 32-	bit Refe	rence 2 v	vord						
11	Drive P	rofile 32-	bit Refe	rence 2 v	vord (Hig	h Byte)					
12	DATA (DUT 1 Va	lue (Lov	v Byte)							
13	DATA (DUT 1 Va	lue (Hig	h Byte)							
14	DATA (DUT 2 Va	lue (Lov	v Byte)							
15	DATA (DUT 2 Va	lue (Hig	h Byte)							
16	DATA	DUT 3 Va	lue (Lov	v Byte)							
17	DATA	OUT 3 Va	lue (Hig	h Byte)							
18	DATA (DUT 4 Va	lue (Lov	v Byte)							
19	DATA (DUT 4 Va	lue (Hig	h Byte)							
20	DATA	OUT 5 Va	lue (Lov	v Byte)							
21	DATA C	DUT 5 Va	lue (Hig	h Byte)							

Instance 922								
Byte	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0							
22	DATA C	OUT 6 Va	lue (Low	v Byte)				
23	DATA C	OUT 6 Va	lue (Hig	h Byte)				
24	DATA C)UT 7 Va	lue (Low	v Byte)				
25	DATA OUT 7 Value (High Byte)							
26	DATA OUT 8 Value (Low Byte)							
27	DATA OUT 8 Value (High Byte)							
28	DATA OUT 9 Value (Low Byte)							
29	DATA OUT 9 Value (High Byte)							
30	DATA C	DUT 10 V	alue (Lo	w Byte)				
31	DATA C	OUT 10 V	/alue (Hi	gh Byte)				

Instar	Instance 972							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	Drive P	rofile 32-	bit Statu	is word (I	Low Byte)		
1	Drive P	rofile 32-	bit Statu	is word				
2	Drive P	rofile 32-	bit Statu	is word				
3	Drive P	rofile 32-	bit Statu	is word (I	High Byte	e)		
4	Drive P	rofile 32-	bit Actu	al 1 word	(Low By	te)		
5	Drive Profile 32-bit Actual 1 word							
6	Drive Profile 32-bit Actual 1 word							
7	Drive P	Drive Profile 32-bit Actual 1 word (High Byte)						
8	Drive Profile 32-bit Actual 2 word (Low Byte)							
9	Drive P	Drive Profile 32-bit Actual 2 word						
10	Drive Profile 32-bit Actual 2 word							
11	Drive Profile 32-bit Actual 2 word (High Byte)							
12	DATA II	N 1 Value	e (Low B	syte)				
13	DATA II	N 1 Value	e (High E	Byte)				

Instar	Instance 972							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
14	DATA II	N 2 Value	e (Low B	syte)				
15	DATA II	N 2 Value	e (High E	3yte)				
16	DATA II	N 3 Value	e (Low B	syte)				
17	DATA II	N 3 Value	e (High E	3yte)				
18	DATA II	N 4 Value	e (Low B	syte)				
19	DATA II	N 4 Value	e (High E	3yte)				
20	DATA II	N 5 Value	e (Low B	syte)				
21	DATA II	N 5 Value	e (High E	3yte)				
22	DATA II	N 6 Value	e (Low B	syte)				
23	DATA II	DATA IN 6 Value (High Byte)						
24	DATA II	DATA IN 7 Value (Low Byte)						
25	DATA II	N 7 Value	e (High E	Byte)				
26	DATA II	N 8 Value	e (Low B	syte)				
27	DATA II	N 8 Value	e (High E	3yte)				
28	DATA II	N 9 Value	e (Low B	syte)				
29	DATA II	N 9 Value	e (High E	Byte)				
30	DATA II	N 10 Valu	ue (Low	Byte)				
31	DATA II	N 10 Valu	ue (High	Byte)				

Class objects

The following table lists the data types used in the class object descriptions of this manual. The table also includes the corresponding data type names of the Common Industrial Protocol (CIP) Specification.

Data type	CIP data type name	Data type description
UINT8	USINT	Unsigned 8-bit integer value
UINT16	UINT	Unsigned 16-bit integer value
UINT32	UDINT	Unsigned 32-bit integer value
SINT8	SINT	Signed 8-bit integer value
SINT16	INT	Signed 16-bit integer value
BYTE	BYTE	Bit string – 8 bits
WORD	WORD	Bit string – 16 bits
BOOL	BOOL	Logical Boolean with values TRUE (1) and FALSE (0)
Short String	SHORT_STRING	Character string (1 byte per character, 1-byte length indicator)

Note: The adapter module is designed to provide DeviceNet communications for a variety of drives with different capabilities. Default, minimum and maximum values for attributes necessarily vary based upon the capabilities of the drive to which the module is attached and are not documented herein. Default, minimum and maximum values for attributes may be found in the:

- · User's manual for the drive
- Electronic Data Sheet Files (EDS) for the drive.

Note that the units of the attributes may differ from those of the parameters documented elsewhere and those differences must be considered when interfacing to the drive via the module.

132 Communication protocol

The table below lists the service names of the objects:

Service	Name
GET	0x0E Get_Attribute_Single
SET	0x10 Set_Attribute_Single
SET ALL	0x02 Set_Attribute_All
GET ALL	0x01 Get_Attribute_All

Identity object, class 01h

This object provides identification of and general information about the device.

Class attributes (Instance #0)

#	Attribute name	Services	Description	Data type
1	Revision	Get	Revision of the Identity Object	UINT8

#	Attribute name	Services	Description	Data type
1	Vendor ID	Get	Identification of the device vendor	UINT16
2	Device Type	Get	Identification of the general product type	UINT16
3	Product Code	Get	Assigned vendor code describing the device	UINT16
4	Revision	Get	Revision of the item that the identity object represents	Array[UINT8 UINT8]
5	Status	Get	Summary status of the device	WORD
6	ODVA Serial Number	Get	Serial number of the DeviceNet module	UINT32
7	Product Name	Get	Product identification; max 32 characters	Short String
8	State	Get	Present state of the device	UINT8

Instance attributes (Instance #1)

Attribute explanations

Vendor ID

Vendor IDs are managed by the Open DeviceNet Vendor Association, Inc. (ODVA). The ABB Vendor ID is 46.

Device Type

The list of device types is managed by ODVA. It is used to identify the device profile that a particular product is using. For example, 2 = AC drive, 13 = DC drive

Product Code

Every ABB drive type or application of the drive has a dedicated product code.

Revision

Revision attribute, which consists of Major and Minor Revisions, identifies the revision of the item the identity object represents.

134 Communication protocol

Status

This attribute represents the current status of the entire device. Its value changes as the state of the device changes. The Status attribute is a WORD with the following bit definitions:

Bit(s)	Type/Name	Definition
0	Owned	TRUE indicates that the device (or an object within the device) has an owner. Within the Master/Slave paradigm the setting of this bit means that the Predefined Master/Slave Connection Set has been allocated to a master. Outside the Master/Slave paradigm the meaning of this bit is to be defined.
1		Reserved, set to 0
2	Configured	TRUE indicates the application of the device has been configured to do something that differs from the "out–of–box" default. This does not include configuration of the communications.
3		Reserved, set to 0
4, 5, 6, 7		Vendor-specific, set to 0
8	Minor Recoverable Fault	TRUE indicates the device detected a recoverable problem. The problem does not cause the device fault state.
9	Minor Unrecoverable Fault	TRUE indicates the device detected a unrecoverable problem. The problem does not cause the device fault state.
10	Major Recoverable Fault	TRUE indicates the device detected a problem which caused the device to transfer into the "Major Recoverable Fault" state.
11	Major Unrecoverable Fault	TRUE indicates the device detected a problem which caused the device to transfer into the "Major Unrecoverable Fault" state.
12, 13, 14, 15		Reserved, set to 0

ODVA Serial Number:

This attribute is a number used in conjunction with the Vendor ID to form a unique identifier for each device on DeviceNet. The value of this attribute is 02000000h plus the SERNO value from the device label.

Product Name:

This text string should represent a short description of the product/product family represented by the product code in attribute 3.

State:

Value	State
0	Nonexistent
1	Device Self Testing
2	Standby
3	Operational
4	Major Unrecoverable Fault
5	Minor Unrecoverable Fault

Represents current state of the identity object

DeviceNet object, class 03h

The DeviceNet object provides the configuration and status of a DeviceNet port. Each DeviceNet product must support one (and only one) DeviceNet object per physical connection to the DeviceNet communication link.

Class attributes

#	Attribute name	Class attributes (Instance #0)	Description	Data type
1	Revision	Get	Revision of the DeviceNet Object Class Definition on which the implementation is based	UINT8

Instance attributes

#	Attribute name	Instance attributes (Instance #1)	Description	Data type
1	MAC ID	Get, Set	Node address	UINT8
2	Baud Rate	Get, Set	Baud rate of the device	UINT8
5	Allocation information	Get, Set	Allocation Choice Master's MAC ID	Struct: BYTE UINT8

The Allocation Information attribute consists of the following:

Allocation Choice Byte (BYTE)

The Allocation Choice byte indicates which of the Predefined Master/Slave Connections are active (in the Configuring, or Established state).

The Allocation Choice byte is initialized to 00 at device powerup or reset.

Master's MAC ID (UINT8)

The range of values is 0...63 and 255 decimal. A value in the range of 0...63 indicates that the Predefined Master/Slave Connection Set is currently allocated and denotes the MAC ID of the device that performed the allocation. The value 255 means that the Predefined Master/Slave Connection set has not been allocated. The Master's MAC ID attribute is initialized to 255 (FF hex) at device power-up/reset.

Connection object, class 05h

Note: Do not modify this object. This object is only used while establishing the connection between the adapter module and the PLC.

The connection class allocates and manages the internal resources associated with both I/O and explicit messaging connections. The specific instance generated by the connection class is referred to as connection instance or connection object.

State	Description	State	Description
00	Nonexistent	03	Established
01	Configuring	04	Timed Out
02	Waiting for Connection ID	05	Deferred Delete

The table below shows the connection object states:

Class attributes

#	Attribute name	Services	Description	Data type
1	Revision	Get	Revision of the connection object	UINT8

Instance attributes

Instance number	Description
1	Explicit messaging connection
2	Polled I/O connection
4	Change-of-state/Cyclic I/O connection

#	Attribute name	Services	Description	Data type
1	State	Get	State of the object (See the state table on page 136.)	UINT8
2	Instance Type	Get	Indicates either I/O (1) or messaging connection (0).	UINT8
3	Transport Class Trig- ger	Get	Defines the behavior of the connection.	UINT8
4	Produced Cnxn Id	Get	Placed in the CAN Identifier Field when the connection transmits	UINT16
5	Consumed Cnxn Id	Get	CAN Identifier Field value that denotes the message to be received	UINT16

#	Attribute name	Services	Description	Data type
6	Comm Char- acteristics	Get	Defines the message group(s) across which productions and consumptions are associated in this connection.	UINT8
7	Produced Connection Size	Get	Maximum number of bytes transmitted across this connection	UINT16
8	Consumed Connection size	Get	Maximum number of bytes received across this connection	UINT16
9	Expected Packet Rate	Get, Set	Defines the timing associated with this connection in milliseconds. A value of 0 deactivates the associated timers.	UINT16
12	Watchdog Timeout Action	Get, Set	Defines how to handle inactivity/watchdog time-outs.	UINT8
13	Produced Connection Path Length	Get	Number of bytes in the produced_connection_path length attribute	UINT16
14	Produced Connection Path	Get	Application object producing data on this connection	Array of UINT8
15	Consumed Connection Path Length	Get	Number of bytes in the consumed_connection_path length attribute	UINT16
16	Consumed Connection Path	Get	Specifies the application object(s) receiving the data consumed by this connection object.	Array of UINT8
17	Production Inhibit Time	Get	Defines the minimum time between new data production in milliseconds	UINT16

Acknowledge handler object, class 2Bh

The acknowledge handler object is used to manage the reception of message acknowledgements. This object communicates with a message producing application object within the device. The acknowledge handler object notifies the producing application of acknowledge reception, acknowledge time-outs and production retry limit.

Class attributes (Instance #0)

#	Attribute name	Services	Description	Data type
1	Revision	Get	Revision of the DeviceNet Object Class Definition upon which the implementation is based	UINT8

Instance attributes (Instance #1)

#	Attribute name	Services	Description	Data type
1	Acknowl- edge Timer	Get, Set	Time in milliseconds to wait for acknowledge before resending	UINT16
2	Retry Limit	Get, Set	Number of Acknowledge Timeouts to wait before informing the producing application of a Retry- Limit_Reached event	UINT8
3	COS Producing Connection Instance	Get	Connection Instance Id which contains the path of the producing I/O application object which is notified of the Acknowledge Handler events	UINT16

Motor data object, class 28h

This object serves as a database for motor parameters. Different motor types require different data to describe the motor. For example, AC induction motors do not need field current data like a DC motor to describe the motor.

Motor class	Motor types in class
AC motors	3 - PM synchronous6 - Wound rotor induction7 - Squirrel cage induction motor
DC motors	1 - PM DC motor 2 - FC DC motor

Class attributes (Instance #0)

#	Attribute name	Services	Description	Data type
1	Revision	Get	Revision of the DeviceNet Object Class Definition upon which the implementation is based	UINT8

Instance	attributes	(Instance	#1)
----------	------------	-----------	-----

#	Attribute name	Services	Description	Motor type	Data type
3	Motor Type	Get	See the table describing the motor types above.	AC	UNIT16
6	Rated Current	Get, Set	Rated stator current from motor name plate Units: [100mA]	AC/DC	UINT16
7	Rated Voltage	Get, Set	Rated base voltage from motor name plate Units: [V]	AC/DC	UINT16
8	Rated Power	Get, Set	Rated power at rated frequency Units: [W]	AC/DC	UINT32
9	Rated Frequency	Get, Set	Rated electrical frequency Units: [Hz]	AC	UINT16
12	Pole Count	Get	Number of poles in the motor	AC	UINT16
15	Base Speed	Get, Set	Nominal speed at rated frequency from nameplate units [RPM]	AC/DC	UINT16

Control supervisor object, class 29h

The object models all the management functions for devices within the 'Hierarchy of Motor Control Devices'. The behavior of motor control devices is described by the AC/DC-drive object, class 2Ah and the Run/Stop event matrix under Run Forward & Run Reverse (Control supervisor object). Section State (Control supervisor object) defines the states of the object.

Class attributes (Instance #0)

#	Attribute name	Services	Description	Data type
1	Revision	Get	Revision of the DeviceNet Object Class Definition upon which the implementation is based	UINT8

Instance attributes (Instance #1)

#	Attribute name	Services	Description	Data type
3	Run 1	Get, Set	0 = Stop, 1 = Run (See the Run/Stop event matrix on page 78.)	BOOL
4	Run 2	Get, Set	0 = Stop, 1 = Run (See the Run/Stop event matrix on page 78.)	BOOL
5	Net Control	Get, Set	0 = Local Control, 1 = Network Control	BOOL
6	State	Get	State of Object (See section State (Control supervisor object).)	UINT8
7	Running 1	Get	0 = Stopped, 1 = Running	BOOL
8	Running 2	Get	0 = Stopped, 1 = Running	BOOL
9	Ready	Get	1 = Ready, Enabled or Stopping; 0 = Other state	BOOL
10	Faulted	Get	0 = Not faulted, 1 = Fault occurred	BOOL
11	Warning	Get	0 = No Warnings present, 1 = Warning	BOOL
12	FaultRst	Get, Set	$0 \rightarrow 1$ Fault Reset	BOOL

#	Attribute name	Services	Description	Data type
13	Fault Code	Get	The fault that caused the last transition to the Faulted state. DRIVECOMM codes are reported. See the drive manual for further information on the DRIVECOMM codes.	UINT16
14	Warning Code	Get	Code word indicating a warning. If multiple warnings are present, the lowest code value is displayed. DRIVECOMM codes are reported. See the drive manual for further information on DRIVECOMM codes.	UINT16
15	CtlFromNet	Get	0 = NetControl disabled 1 = NetControl enabled	BOOL
16	DNFaultMode	Get, Set	2 = Vendor specified	UINT8
17	ForceFault	Get, Set	$0 \rightarrow 1$ forces the drive to fault	BOOL

AC/DC-drive object, class 2Ah

This object models the functions specific to an AC or DC Drive.

Class attributes (Instance #0)

#	Attribute name	Services	Description	Data type
1	Revision	Get	Revision of the DeviceNet Object Class Definition upon which the implementation is based	UINT8

Instance attributes (Instance #1)

#	Attribute name	Services	Description	Data type
3	At Reference	Get	Frequency arrival	BOOL
4	NetRef	Get, Set	Requests torque or speed reference to be local or from the network. 0 = Set Reference not DN Control 1 = Set Reference at DN Control Note that the actual status of Torque or Speed Reference is reflected in attribute 29, RefFromNet.	BOOL
6	Drive mode	Get, Set	0 = Vendor specific	UINT8
7	Speed Actual	Get	Units = See parameter description 10 ODVA speed scale.	SINT16
8	SpeedRef	Get, Set	Units = See parameter description 10 ODVA speed scale.	SINT16
11	Torque Actual	Get	Units = See parameter description 11 ODVA torque scale.	SINT16
12	TorqueRef	Get, Set	Units = See parameter description 11 ODVA torque scale.	SINT16
18	AccelTime	Get, Set	Units = milliseconds [ms]	UINT16
19	DecelTime	Get, Set	Units = milliseconds [ms]	UINT16
#	Attribute name	Services	Description	Data type
----	-------------------	----------	--	--------------
22	Speed Scale	Get, Set	Speed scaling factor. See parameter description 10 ODVA speed scale.	UINT8
24	Torque Scale	Get, Set	Torque scaling factor. See parameter description 11 ODVA torque scale.	UINT8
29	Ref From Net	Get	Reflecting attribute 4	BOOL

Drive parameter object, Class 90h

With FDNA-01, drive parameters can also be accessed via explicit messaging. Explicit messaging makes use of objects consisting of three parts: *class, instance* and *attribute.*

Note: When using the Drive parameter object to update the fieldbus configuration groups, changes to the fieldbus configuration will only take effect when the module is powered up the next time or when a 'Fieldbus Adapter parameter refresh' is given.

Class is always 144 (90h). *Instance* and *attribute* correspond to the drive parameter group and index in the following way:

- Instance = Parameter group (0...99)
- Attribute = Parameter index (01...99)

For example, parameter 99.01 is accessed as follows:

- Class = 144 = 90h
- Instance = 99 = 63h
- *Attribute* = 1 = 01h

Fieldbus configuration object 91h

The Fieldbus configuration object allows the user to configure the fieldbus configuration groups without needing to know the drive-specific groups associated with the configuration groups.

Note: When using the Fieldbus configuration object to update the fieldbus configuration groups, changes to the fieldbus configuration will only take effect when a reset service of the Identity Object is requested, the module is powered up the next time or when a 'Fieldbus Adapter parameter refresh' is given.

Class attributes

#	Attribute name	Services	Description	Data type
1	Revision	Get	Revision of the configuration object	UINT8

Instance #1: FDNA-01 configuration parameters group A (group 1)

The actual parameter group number depends on the drive type. Group A (group 1) corresponds to:

- parameter group 51 in ACS355, ACSM1, ACS850 and ACQ810
- parameter group 51 in ACS880 if the adapter is installed as fieldbus adapter A or group 54 if the adapter is installed as fieldbus adapter B.

#	Attribute name	Services	Description	Data type
1	Configuration Group A (Group 1) – Parameter 1	Get, Set	See 01 FBA TYPE.	UINT16
2	Configuration Group A (Group 1) – Parameter 2	Get, Set	See 02 MAC ID.	UINT16
3	Configuration Group A (Group 1) – Parameter 3	Get, Set	See 03 Baud rate.	UINT16

#	Attribute name	Services	Description	Data type
4	Configuration Group A (Group 1) – Parameter 4	Get, Set	See 04 Drive profile.	UINT16
5	Configuration Group A (Group 1) – Parameter 5	Get, Set	See 05 ODVA stop func.	UINT16
6	Configuration Group A (Group 1) – Parameter 6	Get, Set	See 06 Output instance.	UINT16
7	Configuration Group A (Group 1) – Parameter 7	Get, Set	See 07 Output num pars.	UINT16
8	Configuration Group A (Group 1) – Parameter 8	Get, Set	See 08 Input instance.	UINT16
9	Configuration Group A (Group 1) – Parameter 9	Get, Set	See 09 Input num pars.	UINT16
10	Configuration Group A (Group 1) – Parameter 10	Get, Set	See 10 ODVA speed scale.	UINT16
11	Configuration Group A (Group 1) – Parameter 11	Get, Set	See 11 ODVA torque scale.	UINT16
12	Configuration Group A (Group 1) – Parameter 12	Get, Set	See 12 25 Reserved.	UINT16
13	Configuration Group A (Group 1) – Parameter 13	Get, Set	See 12 25 Reserved.	UINT16
14	Configuration Group A (Group 1) – Parameter 14	Get, Set	See 12 25 Reserved.	UINT16
15	Configuration Group A (Group 1) – Parameter 15	Get, Set	See 12 25 Reserved.	UINT16

148 Communication protocol

#	Attribute name	Services	Description	Data type
16	Configuration Group A (Group 1) – Parameter 16	Get, Set	See 12 25 Reserved.	UINT16
17	Configuration Group A (Group 1) – Parameter 17	Get, Set	See 12 25 Reserved.	UINT16
18	Configuration Group A (Group 1) – Parameter 18	Get, Set	See 12 25 Reserved.	UINT16
19	Configuration Group A (Group 1) – Parameter 19	Get, Set	See 12 25 Reserved.	UINT16
20	Configuration Group A (Group 1) – Parameter 20	Get, Set	See 12 25 Reserved.	UINT16
21	Configuration Group A (Group 1) – Parameter 21	Get, Set	See 12 25 Reserved.	UINT16
22	Configuration Group A (Group 1) – Parameter 22	Get, Set	See 12 25 Reserved.	UINT16
23	Configuration Group A (Group 1) – Parameter 23	Get, Set	See 12 25 Reserved.	UINT16
24	Configuration Group A (Group 1) – Parameter 24	Get, Set	See 12 25 Reserved.	UINT16
25	Configuration Group A (Group 1) – Parameter 25	Get, Set	See 12 25 Reserved.	UINT16
26	Configuration Group A (Group 1) – Parameter 26	Get, Set	See 26 Unrecover. error.	UINT16
27	Configuration Group A (Group 1) – Parameter 27	Get, Set	See 27 FBA par refresh.	UINT16

#	Attribute name	Services	Description	Data type
28	Configuration Group A (Group 1) – Parameter 28	Get	See 28 Par table ver.	UINT16
29	Configuration Group A (Group 1) – Parameter 29	Get	See 29 Drive type code.	UINT16
30	Configuration Group A (Group 1) – Parameter 30	Get	See 30 Mapping file ver.	UINT16
31	Configuration Group A (Group 1) – Parameter 31	Get	See 31 D2FBA comm sta.	UINT16
32	Configuration Group A (Group 1) – Parameter 32	Get	See 32 FBA comm SW ver.	UINT16
33	Configuration Group A (Group 1) – Parameter 33	Get	See 33 FBA appl SW ver.	UINT16

Instance #2: FDNA-01 configuration parameters group B (group 2)

The actual parameter group number depends on the drive type. Group B (group 2) corresponds to

- parameter group 55 in ACS355
- parameter group 53 in ACSM1, ACS850 and ACQ810
- parameter group 53 in ACS880 if the adapter is installed as fieldbus adapter A or group 56 if the adapter is installed as fieldbus adapter B.

#	Attribute name	Services	Description	Data type
1	Configuration Group B (Group 2) – Parameter 1	Get, Set	See 01 FBA data out1.	UINT16
2	Configuration Group B (Group 2) – Parameter 2	Get, Set	See 01 FBA data out1.	UINT16

#	Attribute name	Services	Description	Data type
3	Configuration Group B (Group 2) – Parameter 3	Get, Set	See 01 FBA data out1.	UINT16
4	Configuration Group B (Group 2) – Parameter 4	Get, Set	See 01 FBA data out1.	UINT16
5	Configuration Group B (Group 2) – Parameter 5	Get, Set	See 01 FBA data out1.	UINT16
6	Configuration Group B (Group 2) – Parameter 6	Get, Set	See 01 FBA data out1.	UINT16
7	Configuration Group B (Group 2) – Parameter 7	Get, Set	See 01 FBA data out1.	UINT16
8	Configuration Group B (Group 2) – Parameter 8	Get, Set	See 01 FBA data out1.	UINT16
9	Configuration Group B (Group 2) – Parameter 9	Get, Set	See 01 FBA data out1.	UINT16
10	Configuration Group B (Group 2) – Parameter 10	Get, Set	See 01 FBA data out1.	UINT16

Instance #3: FDNA-01 configuration parameters group C (group 3)

The actual parameter group number depends on the drive type. Group C (group 3) corresponds to:

- parameter group 54 in ACS355
- parameter group 52 in ACSM1, ACS850 and ACQ810
- parameter group 52 in ACS880 if the adapter is installed as fieldbus adapter A or group 55 if the adapter is installed as fieldbus adapter B.

#	Attribute name	Services	Description	Data type
1	Configuration Group C (Group 3) - Parameter 1	Get, Set	See 01 FBA data in1.	UINT16
2	Configuration Group C (Group 3) - Parameter 2	Get, Set	See 01 FBA data in1.	UINT16

#	Attribute name	Services	Description	Data type
3	Configuration Group C (Group 3) - Parameter 3	Get, Set	See 01 FBA data in1.	UINT16
4	Configuration Group C (Group 3) - Parameter 4	Get, Set	See 01 FBA data in1.	UINT16
5	Configuration Group C (Group 3) - Parameter 5	Get, Set	See 01 FBA data in1.	UINT16
6	Configuration Group C (Group 3) - Parameter 6	Get, Set	See 01 FBA data in1.	UINT16
7	Configuration Group C (Group 3) - Parameter 7	Get, Set	See 01 FBA data in1.	UINT16
8	Configuration Group C (Group 3) - Parameter 8	Get, Set	See 01 FBA data in1.	UINT16
9	Configuration Group C (Group 3) - Parameter 9	Get, Set	See 01 FBA data in1.	UINT16
10	Configuration Group C (Group 3) - Parameter 10	Get, Set	See 01 FBA data in1.	UINT16

152 Communication protocol

9

Diagnostics

What this chapter contains

This chapter explains how to trace faults with the status LEDs on the adapter module.

Fault and warning messages

For the fault and warning messages concerning the adapter module, see the drive firmware manual.

LED indications

The adapter module is equipped with three diagnostic LEDs. The LEDs are described below.

Name	Color	Function		
	Off	There is no power applied to the device.		
	Green	Device is operating in a normal condition.		
MODULE	Flashing green	Device needs commissioning due to configuration missing, incomplete or incorrect. The device may be in the standby state.		
	Flashing red	Recoverable fault		
	Red	Device has an unrecoverable fault. This may be cleared by: • Fieldbus Adapter parameter refresh • cycling DeviceNet network power or • cycling drive power. This may have been caused by: • duplicate MAC error • bus-off condition or • buffer overflow • incorrect baudrate setting.		
	Flashing red- green	Device is in self-test.		
	Flashing orange, alternating with the HOST flashing orange	Internal file system error. The error may be cleared by cycling drive power. If the error persists, contact your local ABB representative.		

HOST MODULE		
Name	Color	Function
	Off	 Device is not on-line. Device has not completed the Dup_MAC_ID test yet. Device may not be powered. Look at the Module Status LED.
NETWORK	Flashing green	 Device is on-line but has no connections in the established state. Device has passed the Dup_MAC_ID test, is on-line, but has no established connections to other nodes. For a Group 2 Only device it means that this device is not allocated to a master.
	Green	Device is on-line and has connections in the established state.For a Group 2 Only device it means that the device is allocated to a master.
	Flashing red	One or more I/O connections are in the timed-out state.
	Red	 Failed communication device. The device has detected an error that has rendered it incapable of communicating on the network (Duplicate MAC ID, or Bus-off). Incorrect baudrate setting.

Technical data

What this chapter contains

This chapter contains the technical specifications of the adapter module and the $\ensuremath{\mathsf{DeviceNet}}$ link.

FDNA-01

The figure below shows the enclosure of the adapter module from the front and side.

Mounting	Into the option slot of the drive
Degree of protection	IP20
Ambient conditions	Applicable ambient conditions specified for the drive in its manuals are in effect.
Indicators	Three bicolor LEDs (HOST, MODULE, NETWORK)
Connectors	20-pin connector to the drive Removable 5-pole screw type connector for bus connection (max. 2.5 mm ² cross section)

Power supply	 Input voltage: From the drive: +3.3 V DC (+/- 5%) From the network: +24 V DC nominal (+11 V to +30 V) Input current: From the drive: 180 mA typical, 300 mA maximum (+3.3 V) From the network: 20 mA typical, 50 mA maximum (+24 V)
General	Complies with EMC standard EN 61800-3:2004 Bus interface functionally isolated from the drive Printed circuit board conformal coated

DeviceNet link

Compatible devices	Any ODVA-compliant DeviceNet scanner supporting Poll - Response commands to Group 2 only Slaves					
Medium	 DeviceNet cables: YR-29790 (Thick DeviceNet Cable), YR-29832 (Thin DeviceNet Cable) Termination: 121 ohm, 1%, Metal Film, 1/4 W Maximum bus length: 1200 m 					
Topology	Multi-drop					
Transfer rate	125, 250 or 500 kBit/s					
Serial communication type	Asynchronous, Half duplex					
Protocol	DeviceNet					

160 Technical data

11

Appendix A – Varying the number of drive parameters

What this chapter contains

This chapter describes how to reduce the number of drive parameter members in FDNA-01 assemblies by modifying the EDS file.

Modification of the EDS file

Assembly object instances can either be dynamic or static. The FDNA-01 adapter module only supports static assembly objects. For each supported assembly, the member list (and implicitly, the length in bytes) has been fixed either by the ODVA AC/DC drive profile or ABB Drives profile.

The FDNA-01 assemblies that include "plus drive parameters" have ten members each reserved for the output or input of drive parameters. In some cases, it may be desirable for these assemblies to have fewer drive parameter members. The adapter module provides the flexibility to accomplish this.

162 Appendix A – Varying the number of drive parameters

However, this behavior is non-standard and usually requires additional configuration of the DeviceNet master as well. In particular, the length in bytes of the assembly must be changed to match the drive configuration. This can usually be accomplished by editing the EDS file for the drive or via manual configuration of the DeviceNet master. A description of how to change the EDS file is provided below. For manual configuration, see the documentation for the DeviceNet master.

Note: Only one EDS file with the same Product ID can be installed at a time. Changing the EDS file changes it for all drives with that Product ID. In situations where it is necessary to have different sizes of the same assembly on devices with the same Product ID, manual configuration is required.

The number of drive parameters may be configured between one and ten for output and input by changing the configuration value of parameters 07 Output num pars or 09 Input num pars respectively. To use zero drive parameters, use the assembly upon which the "plus drive parameters" assembly is based.

To change the EDS file, copy it to a new file name and open the copy with a text editor. Search for the [IO_Info] section of the file for the appropriate assembly. For example, the entry for the Basic speed control input plus drive parameters is below.

The length in bytes needs to be updated to match the value from the table below. If more than one assembly "plus drive parameters" is being used, both assembly entries in the file must be changed. The assembly entries must be changed in all the "plus drive parameters" assemblies needing a custom number of parameters. Save the file. Use the new EDS file to configure the DeviceNet master.

Assembly	Number of drive parameters										
	1	2	3	4	5	6	7	8	9	10	
120	6	8	10	12	14	16	18	20	22	24	
121	6	8	10	12	14	16	18	20	22	24	
122	8	10	12	14	16	18	20	22	24	26	
123	8	10	12	14	16	18	20	22	24	26	
170	6	8	10	12	14	16	18	20	22	24	
171	6	8	10	12	14	16	18	20	22	24	
172	8	10	12	14	16	18	20	22	24	26	
173	8	10	12	14	16	18	20	22	24	26	
901	6	8	10	12	14	16	18	20	22	24	
902	8	10	12	14	16	18	20	22	24	26	
951	6	8	10	12	14	16	18	20	22	24	
952	8	10	12	14	16	18	20	22	24	26	
961	6	8	10	12	14	16	18	20	22	24	
962	8	10	12	14	16	18	20	22	24	26	
971	10	12	14	16	18	20	22	24	26	28	
972	14	16	18	20	22	24	26	28	30	32	

164 Appendix A – Varying the number of drive parameters

Further information

Product and service inquiries

Address any inquiries about the product to your local ABB representative, quoting the type designation and serial number of the unit in question. A listing of ABB sales, support and service contacts can be found by navigating to abb.com/searchchannels.

Product training

For information on ABB product training, navigate to new.abb.com/service/training.

Providing feedback on ABB manuals

Your comments on our manuals are welcome. Navigate to new.abb.com/drives/manuals-feedback-form.

Document library on the Internet

You can find manuals and other product documents in PDF format on the Internet at abb.com/drives/documents.

abb.com/drives abb.com/solar abb.com/windconverters abb.com/drivespartners

© Copyright 2018 ABB. All rights reserved. Specifications subject to change without notice.